A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive Value of Artificial Intelligence-Enabled Electrocardiography in Patients With Takotsubo Cardiomyopathy. | LitMetric

Background: Recent studies have indicated high rates of future major adverse cardiovascular events in patients with Takotsubo cardiomyopathy (TC), but there is no well-established tool for risk stratification. This study sought to evaluate the prognostic value of several artificial intelligence-augmented ECG (AI-ECG) algorithms in patients with TC.

Methods And Results: This study examined consecutive patients in the prospective and observational Mayo Clinic Takotsubo syndrome registry. Several previously validated AI-ECG algorithms were used for the estimation of ECG- age, probability of low ejection fraction, and probability of atrial fibrillation. Multivariable models were constructed to evaluate the association of AI-ECG and other clinical characteristics with major adverse cardiac events, defined as cardiovascular death, recurrence of TC, nonfatal myocardial infarction, hospitalization for congestive heart failure, and stroke. In the final analysis, 305 patients with TC were studied over a median follow-up of 4.8 years. Patients with future major adverse cardiac events were more likely to be older, have a history of hypertension, congestive heart failure, worse renal function, as well as high-risk AI-ECG findings compared with those without. Multivariable Cox proportional hazards analysis indicated that the presence of 2 or 3 high-risk findings detected by AI-ECG remained a significant predictor of major adverse cardiac events in patients with TC after adjustment by conventional risk factors (hazard ratio, 4.419 [95% CI, 1.833-10.66], =0.001).

Conclusions: The combined use of AI-ECG algorithms derived from a single 12-lead ECG might detect subtle underlying patterns associated with worse outcomes in patients with TC. This approach might be beneficial for stratifying high-risk patients with TC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944041PMC
http://dx.doi.org/10.1161/JAHA.123.031859DOI Listing

Publication Analysis

Top Keywords

major adverse
16
ai-ecg algorithms
12
adverse cardiac
12
cardiac events
12
patients
9
patients takotsubo
8
takotsubo cardiomyopathy
8
future major
8
events patients
8
congestive heart
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!