Objective: Pediatric nonalcoholic fatty liver disease (NAFLD) is a growing problem, but its underlying mechanisms are poorly understood. We used transcriptomic reporter cell assays to investigate differences in transcriptional signatures induced in hepatocyte reporter cells by the sera of children with and without NAFLD.
Methods: We studied serum samples from 45 children with NAFLD and 28 children without NAFLD. The sera were used to induce gene expression in cultured HepaRG cells and RNA-sequencing was used to determine gene expression. Computational techniques were used to compare gene expression patterns.
Results: Sera from children with NAFLD induced the expression of 195 genes that were significantly differentially expressed in hepatocytes compared to controls with obesity. NAFLD was associated with increased expression of genes promoting inflammation, collagen synthesis, and extracellular matrix remodeling. Additionally, there was lower expression of genes involved in endobiotic and xenobiotic metabolism, and downregulation of peroxisome function, oxidative phosphorylation, and xenobiotic, bile acid, and fatty acid metabolism. A 13-gene signature, including upregulation of TREM1 and MMP1 and downregulation of CYP2C9, was consistently associated with all diagnostic categories of pediatric NAFLD.
Conclusion: The extracellular milieu of sera from children with NAFLD induced specific gene profiles distinguishable by a hepatocyte reporter system. Circulating factors may contribute to inflammation and extracellular matrix remodeling and impair xenobiotic and endobiotic metabolism in pediatric NAFLD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jpn3.12163 | DOI Listing |
Cureus
December 2024
Diagnostic Radiology, Bolan Medical College Quetta, Quetta, PAK.
Introduction Although metabolic dysfunction-associated fatty liver disease (MAFLD) is becoming more common in individuals with hepatocellular carcinoma (HCC), it is still unknown how this condition relates to postoperative complications of HCC. While hepatitis B/C virus (HBV/HCV) infection and alcohol use are primary risk factors, MAFLD has emerged as a significant contributor to HCC incidence. Understanding the prognostic impact of MAFLD on HCC outcomes, particularly post-radical resection, is essential.
View Article and Find Full Text PDFExpert Rev Gastroenterol Hepatol
January 2025
Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada.
Introduction: Accurate and reliable diagnosis and monitoring of hepatic fibrosis is increasingly important given the variable natural history in chronic liver disease (CLD) and expanding antifibrotic therapeutic options targeting reversibility of early-stage cirrhosis. This highlights the need to develop more refined and effective noninvasive techniques for the dynamic assessment of fibrogenesis and fibrolysis.
Areas Covered: We conducted a literature review on PubMed, from 1 December 1970, to 1 November 2024, to evaluate and compare available blood-based and imaging-based noninvasive tools for hepatic fibrosis diagnosis and monitoring.
Biomedicines
December 2024
Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of triglycerides within hepatocytes, which can progress to more severe conditions, such as metabolic dysfunction-associated steatohepatitis (MASH), which may include progressive fibrosis, leading to cirrhosis, cancer, and death. This goal of this review is to highlight recent research showing the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in reducing the key pathogenic pathways of MASLD or MASH. Relevant published studies were identified using PubMed with one or more of the following search terms: MASLD, MASH, NAFLD, NASH, exosome, extracellular vesicle (EV), therapy, and/or mesenchymal stem cells (MSC).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Pediatrics, University of California San Diego, La Jolla, CA, United States.
Gut Liver
January 2025
Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea.
Background/aims: To evaluate the associations between pediatric fatty liver severity, bioelectrical impedance analysis (BIA), and magnetic resonance imaging parameters, including total psoas muscle surface area (tPMSA) and paraspinal muscle fat (PMF).
Methods: Children and adolescents who underwent BIA and liver magnetic resonance imaging between September 2022 and November 2023 were included. Linear regression analyses identified predictors of liver proton density fat fraction (PDFF) including BIA parameters, tPMSA, and PMF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!