A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonlinear Impact of Electrolyte Solutions on Protein Dynamics. | LitMetric

Halophilic organisms have adapted to multi-molar salt concentrations, their cytoplasmic proteins functioning despite stronger attraction between hydrophobic groups. These proteins, of interest in biotechnology because of decreasing fresh-water resources, have excess acidic amino acids. It has been suggested that conformational fluctuations - critical for protein function - decrease in the presence of a stronger hydrophobic effect, and that an acidic proteome would counteract this decrease. However, our understanding of the salt- and acidic amino acid dependency of enzymatic activity is limited. Here, using solution NMR relaxation and molecular dynamics simulations for in total 14 proteins, we show that salt concentration has a limited and moreover non-monotonic impact on protein dynamics. The results speak against the conformational-fluctuations model, instead indicating that maintaining protein dynamics to ensure protein function is not an evolutionary driving force behind the acidic proteome of halophilic proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202400057DOI Listing

Publication Analysis

Top Keywords

protein dynamics
12
acidic amino
8
protein function
8
acidic proteome
8
protein
5
nonlinear impact
4
impact electrolyte
4
electrolyte solutions
4
solutions protein
4
dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!