The Mancha3D code is a versatile tool for numerical simulations of magnetohydrodynamic (MHD) processes in solar/stellar atmospheres. The code includes nonideal physics derived from plasma partial ionization, a realistic equation of state and radiative transfer, which allows performing high-quality realistic simulations of magnetoconvection, as well as idealized simulations of particular processes, such as wave propagation, instabilities or energetic events. The paper summarizes the equations and methods used in the Mancha3D (Multifluid (-purpose -physics -dimensional) Advanced Non-ideal MHD Code for High resolution simulations in Astrophysics 3D) code. It also describes its numerical stability and parallel performance and efficiency. The code is based on a finite difference discretization and a memory-saving Runge-Kutta (RK) scheme. It handles nonideal effects through super-time-stepping and Hall diffusion schemes, and takes into account thermal conduction by solving an additional hyperbolic equation for the heat flux. The code is easily configurable to perform different kinds of simulations. Several examples of the code usage are given. It is demonstrated that splitting variables into equilibrium and perturbation parts is essential for simulations of wave propagation in a static background. A perfectly matched layer (PML) boundary condition built into the code greatly facilitates a nonreflective open boundary implementation. Spatial filtering is an important numerical remedy to eliminate grid-size perturbations enhancing the code stability. Parallel performance analysis reveals that the code is strongly memory bound, which is a natural consequence of the numerical techniques used, such as split variables and PML boundary conditions. Both strong and weak scalings show adequate performance up to several thousands of processors (CPUs).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879365 | PMC |
http://dx.doi.org/10.1007/s11207-024-02267-1 | DOI Listing |
Am J Mens Health
January 2025
MiOra-Public Health Non-profit Organization, Encino, CA, USA.
The literature on health care disparities among U.S. minority men remains limited, and post-pandemic changes in the health care delivery system may uniquely affect this population.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.
View Article and Find Full Text PDFCurr J Neurol
April 2024
Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Several laboratory markers derived from a complete blood count (CBC) have been proposed as potential indicators for assessing the risk of cerebral venous thrombosis (CVT). However, limited and conflicting evidence exists regarding this association. This study aimed to evaluate the role of CBC parameters in CVT development and their link to disease characteristics.
View Article and Find Full Text PDFCurr J Neurol
April 2024
Department of Biology, Islamic Azad University, Zarghan Branch, Zarghan, Iran.
Long non-coding ribonucleic acids (lncRNAs) have been implicated as possible circulating stroke indicators. This study focused on the expression status of antisense non-coding ribonucleic acid in the INK4 locus (ANRIL) and myocardial infarction associated transcript (MIAT) in patients with cerebral venous thrombosis (CVT). In this study, fifty patients with CVT and one hundred age/gender-matched individuals as controls were included.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder associated with an increased risk of arrhythmias, heart failure, and sudden cardiac death. Current imaging and clinical markers are not fully sufficient in accurate diagnosis and patient risk stratification. Although known cardiac biomarkers in blood are used, they lack specificity for HCM and primarily stratify for death due to heart failure in overt cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!