The existence of coastal ecosystems depends on their ability to gain sediment and keep pace with sea level rise. Similar to other coastal areas, Northeast Florida (United States) is experiencing rapid population growth, climate change, and shifting wetland communities. Rising seas and more severe storms, coupled with the intensification of human activities, can modify the biophysical environment, thereby increasing coastal exposure to storm-induced erosion and inundation. Using the Guana Tolomato Matanzas National Estuarine Research Reserve as a case study, we analyzed the distribution of coastal protection services-expressly, wave attenuation and sediment control-provided by estuarine habitats inside a dynamic Intracoastal waterway. We explored six coastal variables that contribute to coastal flooding and erosion-(a) relief, (b) geomorphology, (c) estuarine habitats, (d) wind exposure, (e) boat wake energy, and (f) storm surge potential-to assess physical exposure to coastal hazards. The highest levels of coastal exposure were found in the north and south sections of the Reserve (9% and 14%, respectively) compared to only 4% in the central, with exposure in the south driven by low wetland elevation, high surge potential, and shorelines composed of less stable sandy and muddy substrate. The most vulnerable areas of the central Reserve and main channel of the Intracoastal waterway were exposed to boat wakes from larger vessels frequently traveling at medium speeds (10-20 knots) and had shoreline segments oriented towards the prevailing winds (north-northeast). To guide management for the recently expanded Reserve into vulnerable areas near the City of Saint Augustine, we evaluated six sites of concern where the current distribution of estuarine habitats (mangroves, salt marshes, and oyster beds) likely play the greatest role in natural protection. Spatially explicit outputs also identified potential elevation maintenance strategies such as living shorelines, landform modification, and mangrove establishment for providing coastal risk-reduction and other ecosystem-service co-benefits. Salt marshes and mangroves in two sites of the central section (N-312 and S-312) were found to protect more than a one-quarter of their cross-shore length (27% and 73%, respectively) from transitioning to the highest exposure category. Proposed interventions for mangrove establishment and living shorelines could help maintain elevation in these sites of concern. This work sets the stage for additional research, education, and outreach about where mangroves, salt marshes, and oyster beds are most likely to reduce risk to wetland communities in the region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883153PMC
http://dx.doi.org/10.7717/peerj.16738DOI Listing

Publication Analysis

Top Keywords

estuarine habitats
16
intracoastal waterway
12
salt marshes
12
coastal
10
coastal protection
8
dynamic intracoastal
8
wetland communities
8
coastal exposure
8
vulnerable areas
8
sites concern
8

Similar Publications

Shifts of abundance and community composition of nitrifying microbes along the Changjiang Estuary to the East China Sea.

World J Microbiol Biotechnol

January 2025

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.

Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient.

View Article and Find Full Text PDF

Tidal marshes can contribute to nature-based shoreline protection by reducing the wave load onto the shore and reducing the erosion of the sediment bed. To implement such nature-based shoreline erosion protection requires the ability to quickly restore or create highly stable and erosion-resistant tidal marshes at places where they currently do not yet occur. Therefore, we aim to identify the drivers controlling the rate by which sediment stability builds up in young pioneer marshes.

View Article and Find Full Text PDF

Large-scale restoration projects are an exciting and often untapped opportunity to use an experimental approach to inform ecosystem management and test ecological theory. In our $10M tidal marsh restoration project, we installed over 17,000 high marsh plants to increase cover and diversity, using these plantings in a large-scale experiment to test the benefits of clustering and soil amendments across a stress gradient. Clustered plantings have the potential to outperform widely spaced ones if plants alter conditions in ways that decrease stress for close neighbors.

View Article and Find Full Text PDF

Spatial Patterns of Microbial Communities in Intertidal Sediments of the Yellow River Estuary, China.

Microb Ecol

January 2025

College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.

Estuarine ecosystems are among the most important natural ecosystems on Earth and contribute substantially to human survival and development. The Yellow River Estuary (YRE) is the second largest estuary in China. Microbial communities play an essential role in the material cycle and energy flow in estuarine ecosystems.

View Article and Find Full Text PDF

Increasing microplastics pollution: An emerging vector for potentially pathogenic bacteria in the environment.

Water Res

January 2025

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany.

Microplastics (MP), plastic particles <5 mm, are of global concern due to their worldwide distribution and potential repercussions on ecosystems and human well-being. In this study, MP were collected from the urbanized Susurluk basin in Türkiye to evaluate their vector function for bacterial biofilms, both in the wet and dry seasons. Bacterial biofilms were predominantly found on polyethylene (PE), polypropylene (PP), and polystyrene (PS), which constitute the most common MP types in the region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!