Using advanced nanotechnology membranes has opened up new possibilities in the field of biomedicine, particularly for controlled drug delivery and especially for topical use. Bacterial cellulose membranes (BCM), particularly, have gained prominence owing to their distinctive attributes, including remarkable water retention, safety, biodegradability, and tunable gas exchange. However, they are aqueous matrices and, for this reason, of limited capacity for incorporation of apolar compounds. Cubosomes are lipid nanoparticles composed of a surfactant bicontinuous reverse cubic phase, which, owing to their bicontinuous structure, can incorporate both polar and apolar compounds. Therefore, these particles present a promising avenue for encapsulating and releasing drugs and biomolecules due to their superior entrapment efficiency. In this study, we aim to extend earlier investigations using polymeric hydrogels for cubosome immobilization, now using BCMs, a more resilient biocompatible matrix. Phytantriol cubosome-loaded BCMs were prepared by three distinct protocols: incorporation into wet BCMs, incorporation by swelling of dry BCMs, and an process with the growth of BCMs in a sterile medium already containing cubosomes. Our investigation revealed that these methodologies ensured that cubosomes remained integral, uniformly distributed, and thoroughly dispersed within the membrane, as confirmed using Small-Angle X-ray Scattering (SAXS) and high-resolution confocal microscopy. The effective incorporation and sustained release of diclofenac were validated across the different BCMs and compared with hyaluronic acid (HA) hydrogel in our previous studies. Furthermore, the resistance against cubosome leaching from the three BCM and HA hydrogel samples was quantitatively evaluated and contrasted. We hope that the outcomes from this research will pave the way for innovative use of this platform in the incorporation and controlled release of varied active agents, amplifying the already multifaceted applicability of BCMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882115 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2024.101000 | DOI Listing |
Plant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
College of Life Science, Shenyang Normal University, Shenyang 110000, PR China.
A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827 could grow optimally at 25-35 °C, pH 6.5-7.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Centro Universitario Municipal de Taguasco "Enrique José Varona", Universidad de Sancti Spíritus "José Martí Pérez", Sancti Spíritus, Cuba.
The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).
View Article and Find Full Text PDFSci Rep
January 2025
Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!