In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882133 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2024.100998 | DOI Listing |
ACS Macro Lett
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Stimuli-responsive polymers have demonstrated significant potential in the development of smart materials due to their capacity to undergo targeted property changes in response to external physical or chemical stimuli. However, the scales of response in most existing stimuli-responsive polymer systems are mainly focused on three levels: functional units, chain conformations, or polymer topologies. Herein, we have developed a covalent polymer network (CPN) capable of converting into a supramolecular polymer network (SPN) within bulk materials directly at the scale of polymer network types.
View Article and Find Full Text PDFGels
January 2025
Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia.
Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China. Electronic address:
In this study, we constructed a pH/laccase dual responsive drug delivery system, denoted as IMI@(CMCS+SL)n, capable of modulating wall thickness and drug release via the layer-by-layer deposition of carboxymethyl chitosan (CMCS) and sodium lignosulfonate (SL). The IMI@(CMCS+SL)n microcapsules was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), (energy-dispersive X-ray spectroscopy) EDS, X-ray photoelectron spectroscopy (XPS), and dynamic light scattering techniques (DLS) analysis. IMI@(CMCS+SL)n demonstrated not only a high loading capacity (exceeding 90 %) but also exhibited exceptional performance in sustained release and anti-termite activity of IMI.
View Article and Find Full Text PDFSmall
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary. Electronic address:
Periodontitis, a chronic inflammatory condition of the oral cavity, is characterized by the progressive destruction of the supporting structures of the teeth. The pathogenic effects of periodontopathogens extend beyond the local periodontal environment, contributing to systemic health complications, thereby underscoring the need for effective therapeutic strategies. Current standard treatments, which involve mechanical debridement coupled with systemic anti-inflammatory and antibiotic therapies, are often associated with limited efficacy, adverse effects, and the emergence of antibiotic resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!