Current progress in research focused on salt tolerance in L.

Front Plant Sci

Shandong Academy of Grape, Ji'nan, Shandong, China.

Published: February 2024

Soil salinization represents an increasingly serious threat to agronomic productivity throughout the world, as rising ion concentrations can interfere with the growth and development of plants, ultimately reducing crop yields and quality. A combination of factors is driving this progressive soil salinization, including natural causes, global climate change, and irrigation practices that are increasing the global saline-alkali land footprint. Salt stress damages plants both by imposing osmotic stress that reduces water availability while also inducing direct sodium- and chlorine-mediated toxicity that harms plant cells. L. exhibits relatively high levels of resistance to soil salinization. However, as with other crops, grapevine growth, development, fruit yields, and fruit quality can all be adversely affected by salt stress. Many salt-tolerant grape germplasm resources have been screened in recent years, leading to the identification of many genes associated to salt stress and the characterization of the mechanistic basis for grapevine salt tolerance. These results have also been leveraged to improve grape yields through the growth of more tolerant cultivars and other appropriate cultivation measures. The present review was formulated to provide an overview of recent achievements in the field of research focused on grapevine salt tolerance from the perspectives of germplasm resource identification, the mining of functional genes, the cultivation of salt-tolerant grape varieties, and the selection of appropriate cultivation measures. Together, we hope that this systematic review will offer insight into promising approaches to enhancing grape salt tolerance in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881718PMC
http://dx.doi.org/10.3389/fpls.2024.1353436DOI Listing

Publication Analysis

Top Keywords

salt tolerance
16
soil salinization
12
salt stress
12
growth development
8
salt-tolerant grape
8
grapevine salt
8
appropriate cultivation
8
cultivation measures
8
salt
7
current progress
4

Similar Publications

Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.

View Article and Find Full Text PDF

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

LbHKT1;1 Negatively Regulates Salt Tolerance of Limonium bicolor by Decreasing Salt Secretion Rate of Salt Glands.

Plant Cell Environ

January 2025

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China.

The HKT-type proteins have been extensively studied and have been shown to play important roles in long-distance Na transport, maintaining ion homoeostasis and improving salt tolerance in plants. However, there have been no reports on the types, characteristics and functions of HKT-type proteins in Limonium bicolor, a recretohalophyte species with the typical salt gland structure. In this study, five LbHKT genes were identified in L.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!