The Lawrence Livermore National Laboratory - Center for Accelerator Mass Spectrometry (LLNL/CAMS) 1 MV AMS system was converted from a biomedical AMS instrument to a natural abundance C spectrometer. The system is equipped with a gas-accepting hybrid ion source capable of measuring both solid (graphite) and gaseous (CO) samples. Here we describe a series of experiments intended to establish and optimize CO measurement capabilities at natural abundance levels. A maximum instantaneous ionization efficiency of 8 % was achieved with 3 % CO in helium at a flow rate of approximately 220 μL/min (3.5 μg C/min). For modern materials (e.g., OX I) we measured an average of 240 ± 50 14C counts/μg C, equivalent to a total system efficiency of approximately 3 %. Experimental CO samples with FC values ranging from 0.20 to 1.05 measured as both graphite and directly as CO gas produced equivalent values with an average offset of < 2σ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883299PMC
http://dx.doi.org/10.1016/j.nimb.2022.08.012DOI Listing

Publication Analysis

Top Keywords

natural abundance
12
ion source
8
optimization llnl/cams
4
llnl/cams gas-accepting
4
gas-accepting ion
4
source compact
4
compact ams
4
ams natural
4
abundance radiocarbon
4
radiocarbon analysis
4

Similar Publications

Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF).

View Article and Find Full Text PDF

A total of 640 one-day-old Cobb 500 MV × Cobb 500 FF mixed broilers were randomly assigned to one of four experimental treatments with four replicates per treatment and 40 birds per replicate for 32 days. The treatments consisted of a basal diet (control group), basal diet + 0.02% zinc bacitracin (AGP group), basal diet + 0.

View Article and Find Full Text PDF

is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.

View Article and Find Full Text PDF

Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench-Scale Study.

Toxins (Basel)

December 2024

Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.

The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.

View Article and Find Full Text PDF

AI-Assisted High-Throughput Tissue Microarray Workflow.

Methods Protoc

November 2024

Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.

Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!