Electro-spraying Process (ESP) was used to coat extracted curcumin (CUR) with milk protein isolate (MPI) at equal concentration. The variables were applied voltage (AV), pumps flow rate ratio (PFRR) for coating (CUR with MPI), travelling distance (TD for coating and dehydration), ESE and MPI concentrations. They changed respectively from 7.5 to 27.5 kV, 2-10 times, and 5-25 cm, and 1.5-3.5% (w/w). When the MPI concentration, TD, PFRR, and AV of ESE reached respectively to 2.56 %, 16.64 cm, 6.77 times, and 19.06 kV; the resulting nanoparticle diameter and encapsulation efficiency of CUR coated (with MPI) became 232 nm (minimum) and 80.7% (maximum) values. The scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed that the produced nanoparticles were bead-free, homogeneous, smooth surfaces, and >50% uniformity. While the nanoparticles of CUR had >70% heat resistance (up to 10 min at 120 °C against degradation), it had more than 100% antioxidant capacity in aqueous solution than its free form (because of its appropriate and intact coating). In-vitro studies showed that the nano encapsulated particles released >80% of CUR into the intestinal tract without significant release in simulated gastric fluid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881552PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25680DOI Listing

Publication Analysis

Top Keywords

cur
5
mpi
5
application electro-spraying
4
electro-spraying technique
4
technique mathematical
4
mathematical modelling
4
modelling nanoencapsulation
4
nanoencapsulation curcumin
4
curcumin electro-spraying
4
electro-spraying process
4

Similar Publications

The clinical application of curcumin (CUR) is restricted by its low solubility, instability, and poor bioavailability. To overcome these limitations, we developed a novel stearic acid-grafted inulin-based nano-delivery system for CUR encapsulation. The structure of stearoyl inulin (SA-IN) was characterized using Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, thermogravimetric analysis, and contact angle measurements.

View Article and Find Full Text PDF

Objective: Patients with osteosarcoma (OS) exhibit metastasis upon diagnosis, and the condition frequently acquires resistance to traditional chemotherapy treatments, failing the therapy. The objective of this research was to examine the impact of curculigoside (Cur), a key phenolic compound discovered in the rhizome of C. orchioides Gaertn, on OS cells and the surrounding tumor environment.

View Article and Find Full Text PDF

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Pityriasis rosea (PR) is a self-limited exanthem associated with the endogenous systemic reactivation of human herpesvirus (HHV)-6 and HHV-7. The disease typically begins with a single erythematous patch on the trunk (herald patch), followed by a secondary eruption of smaller papulosquamous lesions. Rarely, the herald patch may be the only cutaneous manifestation of PR.

View Article and Find Full Text PDF

Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against in Endodontic Infections.

Pharmaceutics

January 2025

Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!