and are prevalent in the subgingival area where the frequency of fungal colonization increases with periodontal disease. Candida's transition to a pathogenic state and its interaction with exacerbate periodontal disease severity. However, current treatments for these infections differ, and combined therapy remains unexplored. This work is based on an antimicrobial peptide that is therapeutic and induces a color change in a nanoparticle reporter. We built and characterized two enzyme-activatable prodrugs to treat and detect and via the controlled release of the antimicrobial peptide. The zwitterionic prodrug quenches the antimicrobial peptide's activity until activation by a protease inherent to the pathogens (SAP9 for and RgpB for ). The toxicity of the intact prodrugs was evaluated against fungal, bacterial, and mammalian cells. Therapeutic efficacy was assessed through microscopy, disk diffusion, and viability assays, comparing the prodrug to the antimicrobial peptide alone. Finally, we developed a colorimetric detection system based on the aggregation of plasmonic nanoparticles. The intact prodrugs showed negligible toxicity to cells absent a protease trigger. The therapeutic impact of the prodrugs was comparable to that of the antimicrobial peptide alone, with a minimum inhibitory concentration of 3.1 - 16 µg/mL. The enzymatic detection system returned a detection limit of 10 nM with gold nanoparticles and 3 nM with silver nanoparticles. This approach offers a convenient and selective protease sensing and protease-induced treatment mechanism based on bioinspired antimicrobial peptides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879876 | PMC |
http://dx.doi.org/10.7150/thno.91165 | DOI Listing |
Microbiol Res
December 2024
Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic. Electronic address:
The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions.
View Article and Find Full Text PDFAdv Biol (Weinh)
December 2024
International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
The use of antibiotics is the preferred therapy for bacterial diseases. However, overusing antibiotics has led to the development of antibiotic resistance in bacteria, which is now a major public health concern. Therefore, in this study, the performance of lysozyme (LYZ)/tracheal antimicrobial peptide (TAP)-based tissue-specific expression antimicrobial plasmids (TSEAP) have been evaluated in the treatment of mastitis in mice.
View Article and Find Full Text PDFBackground: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading pathogen causing severe endovascular infections. The prophage-encoded protein Gp05 has been identified as a critical virulence factor that contributes to MRSA persistence during vancomycin (VAN) treatment in an experimental endocarditis model. However, the underlining mechanisms driving this persistence phenotype remain poorly understood.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
Objectives: Caries is a significant public health challenge. Herein, novel tooth-targeting antimicrobial peptides (HABPs@AMPs) were developed by combining the antimicrobial peptide DJK-5 with hydroxyapatite (HA) binding peptides, providing a potential new strategy for caries management.
Materials And Methods: The minimal inhibitory concentration (MIC) and minimal biofilm inhibitory concentration (MBIC) values of HABPs@AMPs were determined via micro-broth dilution and crystal violet staining.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!