The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881698PMC
http://dx.doi.org/10.3389/fnins.2024.1276714DOI Listing

Publication Analysis

Top Keywords

grid cells
20
allocentric brain
8
motor symptoms
8
central hubs
8
basal ganglia
8
dopamine depletion
8
computation grid
8
grid
5
cells missing
4
missing link
4

Similar Publications

Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.

View Article and Find Full Text PDF

Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated.

View Article and Find Full Text PDF

CBX3 contributes to pancreatic adenocarcinoma progression via promoting KIF20A expression.

Cytotechnology

February 2025

Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, No. 41. People's East Road, Korla, 841000 Xinjiang Uygur Autonomous Region China.

Pancreatic adenocarcinoma (PAAD) is one of the malignant tumors with poor prognosis. This study aims to inquiry the effects of Chromobox homologue 3 (CBX3) on PAAD progression. Pan-cancer analysis of CBX3 and its correlation with PAAD progression were investigated by informatics analysis.

View Article and Find Full Text PDF

Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD.

View Article and Find Full Text PDF

Unlabelled: Drug repurposing is necessary to accelerate drug discovery and meet the drug needs. This study investigated the possibility of using fluvoxamine to inhibit the cellular metabolizing enzyme NUDT5 in breast cancer. Computational and experimental techniques were used to evaluate the structural flexibility, binding stability, and chemical reactivity of the drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!