Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acyl-homoserine lactones (AHLs), mediating pivotal physiological activities through quorum sensing (QS), have conventionally been considered limited to Gram-negative bacteria. However, few reports on the existence of AHLs in Gram-positive bacteria have questioned this conception. , as Gram-positive bacteria already utilizing a lactone-based QS molecule (i.e., gamma-butyrolactones), are yet to be explored for producing AHLs, considering their metabolic capacity and physiological distinction. In this regard, our study examined the potential production of AHLs within by deploying HPLC-MS/MS methods, which resulted in the discovery of multiple AHL productions by , FRI-5, , , , and A3(2). Each of these species possesses a combination of AHLs of different size ranges, possibly due to their distinct properties and regulatory roles. In light of additional lactone molecules, we further confirm that AHL- and GBL-synthases (i.e., LuxI and AfsA enzyme families, respectively) and their receptors (i.e., LuxR and ArpA) are evolutionarily distinct. To this end, we searched for the components of the AHL signaling circuit, i.e., AHL synthases and receptors, in the genus, and we have identified multiple potential LuxI and LuxR homologs in all 2,336 species included in this study. The 6 of interest in this study also had at least 4 LuxI homologs and 97 LuxR homologs. In conclusion, AHLs and associated gene regulatory systems could be more widespread within the prokaryotic realm than previously believed, potentially contributing to the control of secondary metabolites (e.g., antibiotics) and their complex life cycle, which leads to substantial industrial and clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883386 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1342637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!