Monitoring indicator genes to assess antimicrobial resistance contamination in phytoplankton and zooplankton communities from the English Channel and the North Sea.

Front Microbiol

ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France.

Published: February 2024

Phytoplankton and zooplankton play a crucial role in marine ecosystems as the basis of the food webs but are also vulnerable to environmental pollutants. Among emerging pollutants, antimicrobial resistance (AMR) is a major public health problem encountered in all environmental compartments. However, the role of planktonic communities in its dissemination within the marine environment remains largely unexplored. In this study, we monitored four genes proposed as AMR indicators (, , and ) in phytoplankton and zooplankton samples collected in the English Channel and the North Sea. The indicator gene abundance was mapped to identify the potential sources of contamination. Correlation was assessed with environmental parameters to explore the potential factors influencing the abundance of AMR in the plankton samples. The prevalence in phytoplankton and zooplankton of and , the most quantified indicator genes, ranged from 63 to 88%. A higher level of phytoplankton and zooplankton carrying these genes was observed near the French and English coasts in areas subjected to anthropogenic discharges from the lands but also far from the coasts. Correlation analysis demonstrated that water temperature, pH, dissolved oxygen and turbidity were correlated to the abundance of indicator genes associated with phytoplankton and zooplankton samples. In conclusion, the and genes would be suitable indicators for monitoring AMR contamination of the marine environment, either in phytoplankton and zooplankton communities or in seawater. This study fills a part of the gaps in knowledge about the AMR transport by marine phytoplankton and zooplankton, which may play a role in the transmission of resistance to humans through the marine food webs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882542PMC
http://dx.doi.org/10.3389/fmicb.2024.1313056DOI Listing

Publication Analysis

Top Keywords

phytoplankton zooplankton
32
indicator genes
12
antimicrobial resistance
8
phytoplankton
8
zooplankton
8
zooplankton communities
8
english channel
8
channel north
8
north sea
8
zooplankton play
8

Similar Publications

Maps of (baseline) δC and δN values of primary producers or consumers near the base of food webs provide crucial information for interpreting patterns in the isotopic composition of consumers that occupy higher trophic levels. In marine systems, understanding how oceanographic variables influence these values enables the creation of dynamic isoscapes across time and space, providing insights into how ecosystems function. The San Jorge Gulf (SJG) in the southwest Atlantic Ocean (45° S-47° S) is an area of particular importance, as it is located on one of the most productive continental shelves in the world, supporting large fisheries and marine mammal and seabird populations.

View Article and Find Full Text PDF

Carbon quantum dots modification reduces TiO nanoparticle toxicity in an aquatic food chain.

J Hazard Mater

January 2025

Environment Research Institute, Shandong University, Qingdao 266237, China. Electronic address:

Carbon quantum dots (CQDs) are emerging as a promising zero-dimensional carbon nanomaterial with the potential to enhance the catalytic properties of titanium dioxide nanoparticles (TiO NPs). Although CQDs modification alters the physicochemical properties of TiO NPs, the impact on their toxicity has been rarely explored. In this study, we investigated the effects of CQDs doping on the toxicity, bioaccumulation, and trophic transfer of TiO NPs using a representative aquatic food chain comprising phytoplankton (Scenedesmus obliquus), zooplankton (Daphnia magna), and fish (Danio rerio).

View Article and Find Full Text PDF

Mercury and selenium in biological pump under upwelling-downwelling influence in Cabo Frio shelf, South Atlantic Ocean, Brazil.

Sci Total Environ

January 2025

Universidade Federal do Pará, Programa de Pós-Graduação em Geologia e Geoquímica, Rua Augusto Corrêa, 1, Campus Guamá, PA 66075-110 Belém, Pará, Brazil.

The knowledge of metals concentration in upwelling areas are a concern due the higher productivity of these areas In Cabo Frio Upwelling-Downwelling System (CFUS) is high primary productivity area and has been identified as an Hg hotspot to biota in SE Brazil that has been susceptible to Hg inputs, due to growing industrialization in the region. To investigate the concentration of Hg and Se metals, as well as the trophic transfer of these metals, the present study investigated Hg and Se concentrations in 64 samples collected in net mesh of >20, >64, >150 and >300 μm, in 2012, in the region's water masses. Higher mean Hg concentrations were found in zooplankton, 0.

View Article and Find Full Text PDF

Modeling nearshore total phosphorus in Lake Michigan using linked hydrodynamic and water quality models.

Ecol Modell

July 2024

National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI.

Article Synopsis
  • Lake Michigan's nearshore regions, influenced significantly by nearby rivers, show total phosphorus (TP) concentrations exceeding the GLWQA's target of 7 μg L, raising concerns about nutrient-related issues.
  • A monitoring program utilizing phosphorus-based models linked to hydrodynamic models was implemented to assess these nearshore conditions, revealing variability in TP concentrations due to the area's dynamic nature.
  • The study found that while model predictions varied, they successfully illustrated temporal and spatial trends, indicating that hydrodynamics and river loads critically influence TP levels, thereby making the TP model a valuable tool for future assessments.
View Article and Find Full Text PDF

Climate change is shifting the timing of organismal life-history events. Although consequential food-web mismatches can emerge if predators and prey shift at different rates, research on phenological shifts has traditionally focused on single trophic levels. Here, we analysed >2000 long-term, monthly time series of phytoplankton, zooplankton, and fish abundance or biomass for the San Francisco, Chesapeake, and Massachusetts bays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!