Selective enhancement of fear extinction by inhibiting neuronal adenylyl cyclase 1 (AC1) in aged mice.

Mol Brain

Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Published: February 2024

Adenylyl cyclase 1 (AC1) is a selective subtype of ACs, which is selectively expressed in neurons. The activation of AC1 is activity-dependent, and AC1 plays an important role in cortical excitation that contributes to chronic pain and related emotional disorders. Previous studies have reported that human-used NB001 (hNB001, a selective AC1 inhibitor) produced analgesic effects in different animal models of chronic pain. However, the potential effects of hNB001 on learning and memory have been less investigated. In the present study, we found that hNB001 affected neither the induction nor the expression of trace fear, but selectively enhanced the relearning ability during the extinction in aged mice. By contrast, the same application of hNB001 did not affect recent, remote auditory fear memory, or remote fear extinction in either adult or aged mice. Furthermore, a single or consecutive 30-day oral administration of hNB001 did not affect acute nociceptive response, motor function, or anxiety-like behavior in either adult or aged mice. Our results are consistent with previous findings that inhibition of AC1 did not affect general sensory, emotional, and motor functions in adult mice, and provide strong evidence that inhibiting the activity of AC1 may be beneficial for certain forms of learning and memory in aged mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885434PMC
http://dx.doi.org/10.1186/s13041-024-01083-9DOI Listing

Publication Analysis

Top Keywords

aged mice
20
fear extinction
8
adenylyl cyclase
8
cyclase ac1
8
chronic pain
8
learning memory
8
hnb001 affect
8
adult aged
8
ac1
7
mice
6

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.

Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.

Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.

View Article and Find Full Text PDF

Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.

Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

reMYND, Leuven, Belgium.

Background: To improve clinical translatability of non-clinical in-vivo Alzheimer's disease (AD) models, a humanized APP knock-in mouse model (APP) was recently created (Xia, D. et al., 2022).

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.

Background: This study investigates the therapeutic versus side effects of intranasal lithium chloride (LiCl) in Ryanodex formulation vehicle (RFV) to inhibit inflammation and pyroptosis and to ameliorate on cognitive dysfunction and depressive behavior in 5XFAD mice.

Method: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or oral LiCl (3 mM/kg) dissolved in RFV starting at 2 or 9 months old and the continuous treatment lasted for 12 weeks. Behavior was examined for depression, cognition, olfaction, and motor function at the ages of 5 or 12 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!