Melioidosis, a human infectious disease with a high mortality rate in many tropical countries, is caused by the pathogen Burkholderia pseudomallei (B. pseudomallei). The function of the B. pseudomallei sigma S (RpoS) transcription factor in survival during the stationary growth phase and conditions of oxidative stress is well documented. Besides the rpoS, bioinformatics analysis of B. pseudomallei genome showed the existence of two rpoN genes, named rpoN1 and rpoN2. In this study, by using the mouse macrophage cell line RAW264.7 as a model of infection, the involvement of B. pseudomallei RpoS and RpoN2 in the invasion, intracellular survival leading to the reduction in multinucleated giant cell (MNGC) formation of RAW264.7 cell line were illustrated. We have demonstrated that the MNGC formation of RAW264.7 cell was dependent on a certain number of intracellular bacteria (at least 5 × 10). In addition, the same MNGC formation (15%) observed in RAW264.7 cells infected with either B. pseudomallei wild type with multiplicity of infection (MOI) 2 or RpoN2 mutant (∆rpoN2) with MOI 10 or RpoS mutant (∆rpoS) with MOI 100. The role of B. pseudomallei RpoS and RpoN2 in the regulation of type III secretion system on bipB-bipC gene expression was also illustrated in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-024-01944-2DOI Listing

Publication Analysis

Top Keywords

pseudomallei rpos
12
rpos rpon2
12
mngc formation
12
pseudomallei
8
burkholderia pseudomallei
8
invasion intracellular
8
intracellular survival
8
multinucleated giant
8
giant cell
8
mouse macrophage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!