Piezo2 Contributes to Traumatic Brain Injury by Activating the RhoA/ROCK1 Pathways.

Mol Neurobiol

Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.

Published: October 2024

Traumatic brain injury (TBI) can lead to short-term and long-term physical and cognitive impairments, which have significant impacts on patients, families, and society. Currently, treatment outcomes for this disease are often unsatisfactory, due at least in part to the fact that the molecular mechanisms underlying the development of TBI are largely unknown. Here, we observed significant upregulation of Piezo2, a key mechanosensitive ion channel protein, in the injured brain tissue of a mouse model of TBI induced by controlled cortical impact. Pharmacological inhibition and genetic knockdown of Piezo2 after TBI attenuated neuronal death, brain edema, brain tissue necrosis, and deficits in neural function and cognitive function. Mechanistically, the increase in Piezo2 expression contributed to TBI-induced neuronal death and subsequent production of TNF-α and IL-1β, likely through activation of the RhoA/ROCK1 pathways in the central nervous system. Our findings suggest that Piezo2 is a key player in and a potential therapeutic target for TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415480PMC
http://dx.doi.org/10.1007/s12035-024-04058-yDOI Listing

Publication Analysis

Top Keywords

traumatic brain
8
brain injury
8
rhoa/rock1 pathways
8
piezo2 key
8
brain tissue
8
neuronal death
8
piezo2
5
brain
5
tbi
5
piezo2 contributes
4

Similar Publications

Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).

View Article and Find Full Text PDF

Objectives: Balancing oxygen requirements, neurologic outcomes, and systemic complications from transfusions in traumatic brain injury (TBI) patients is challenging. This review compares liberal and restrictive transfusion strategies in TBI patients.

Data Sources: Electronic databases were searched from inception to October 2024.

View Article and Find Full Text PDF

Purpose: Mental health conditions after mild traumatic brain injury (mTBI) are common and can complicate injury outcomes, but are under-treated. According to the Common Sense Model of Self-Regulation, the way patients perceive their health conditions can influence the way they manage them, including if, when, and how they seek treatment. This study explored how individuals perceive persistent symptoms after mTBI, in order to develop a grounded theory about what motivates and demotivates them to seek mental health treatment after their injury.

View Article and Find Full Text PDF

User-Centered Design of Neuroprosthetics: Advancements and Limitations.

CNS Neurol Disord Drug Targets

January 2025

Biosciences and Bioengineering PhD Program, American University of Sharjah, UAE.

Neurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system.

View Article and Find Full Text PDF

Background: Unconsciousness occurs when a patient enters a sleeplike state but cannot be aroused, and it is not due to physiological drowsiness. It is a common presentation in the Accident and Emergency Department (A&E), and a burden to the emergency physician especially when the cause is unknown. The cause of coma may be trauma or non-trauma related.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!