AI Article Synopsis

  • ATF5 is a transcription factor crucial for the differentiation and survival of sensory neurons in mouse olfactory organs, yet its specific target genes were previously unknown.
  • Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) experiments identified Nhlh1 as a novel target gene for ATF5, showing that ATF5 binds to its enhancer region and influences its expression.
  • The study suggests that ATF5, along with the co-factor Lhx2, plays a vital role in regulating Nhlh1 to promote the development of olfactory and vomeronasal sensory neurons.

Article Abstract

Activating transcription factor 5 (ATF5) is a transcription factor that belongs to the cAMP-response element-binding protein/ATF family and is essential for the differentiation and survival of sensory neurons in mouse olfactory organs. However, transcriptional target genes for ATF5 have yet to be identified. In the present study, chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) experiments were performed to verify ATF5 target genes in the main olfactory epithelium and vomeronasal organ in the postnatal pups. ChIP-qPCR was conducted using hemagglutinin (HA)-tagged ATF5 knock-in olfactory organs. The results obtained demonstrated that ATF5-HA fusion proteins bound to the CCAAT/enhancer-binding protein-ATF response element (CARE) site in the enhancer region of nescient helix-loop-helix 1 (Nhlh1), a transcription factor expressed in differentiating olfactory and vomeronasal sensory neurons. Nhlh1 mRNA expression was downregulated in ATF5-deficient (ATF5) olfactory organs. The LIM/homeobox protein transcription factor Lhx2 co-localized with ATF5 in the nuclei of olfactory and vomeronasal sensory neurons and bound to the homeodomain site proximal to the CARE site in the Nhlh1 gene. The CARE region of the Nhlh1 gene was enriched by the active enhancer marker, acetyl-histone H3 (Lys27). The present study identified Nhlh1 as a novel target gene for ATF5 in murine olfactory organs. ATF5 may upregulate Nhlh1 expression in concert with Lhx2, thereby promoting the differentiation of olfactory and vomeronasal sensory neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-024-03871-0DOI Listing

Publication Analysis

Top Keywords

transcription factor
20
sensory neurons
20
olfactory vomeronasal
16
vomeronasal sensory
16
olfactory organs
16
atf5
9
olfactory
9
nescient helix-loop-helix
8
helix-loop-helix nhlh1
8
nhlh1 novel
8

Similar Publications

SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1.

J Cardiothorac Surg

January 2025

Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.

Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

View Article and Find Full Text PDF

Background: Recent advancements in contemporary therapeutic approaches have increased the survival rates of lung cancer patients; however, the long-term benefits remain constrained, underscoring the pressing need for novel biomarkers. Surfactant-associated 3 (SFTA3), a long non-coding RNA predominantly expressed in normal lung epithelial cells, plays a crucial role in lung development. Nevertheless, its function in lung adenocarcinoma (LUAD) remains inadequately understood.

View Article and Find Full Text PDF

A foundation model of transcription across human cell types.

Nature

January 2025

Program of Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA.

Transcriptional regulation, which involves a complex interplay between regulatory sequences and proteins, directs all biological processes. Computational models of transcription lack generalizability to accurately extrapolate to unseen cell types and conditions. Here we introduce GET (general expression transformer), an interpretable foundation model designed to uncover regulatory grammars across 213 human fetal and adult cell types.

View Article and Find Full Text PDF

Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.

View Article and Find Full Text PDF

Ribosome biogenesis is pivotal in the self-replication of life. In Escherichia coli, three ribosomal RNAs and 54 ribosomal proteins are synthesized and subjected to cooperative hierarchical assembly facilitated by numerous accessory factors. Realizing ribosome biogenesis in vitro is a critical milestone for understanding the self-replication of life and creating artificial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!