The identification and characterization of spontaneous symmetry breaking is central to our understanding of strongly correlated two-dimensional materials. In this work, we utilize the angle-resolved measurements of transport non-reciprocity to investigate spontaneous symmetry breaking in twisted trilayer graphene. By analysing the angular dependence of non-reciprocity in both longitudinal and transverse channels, we are able to identify the symmetry axis associated with the underlying electronic order. We report that a hysteretic rotation in the mirror axis can be induced by thermal cycles and a large current bias, supporting the spontaneous breaking of rotational symmetry. Moreover, the onset of non-reciprocity with decreasing temperature coincides with the emergence of orbital ferromagnetism. Combined with the angular dependence of the superconducting diode effect, our findings uncover a direct link between rotational and time-reversal symmetry breaking. These symmetry requirements point towards exchange-driven instabilities in momentum space as a possible origin for transport non-reciprocity in twisted trilayer graphene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-024-01809-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!