A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid ResNet-ViT approach to bridge the global and local features for myocardial infarction detection. | LitMetric

Myocardial infarction (MI) remains a significant contributor to global mortality and morbidity, necessitating accurate and timely diagnosis. Current diagnostic methods encounter challenges in capturing intricate patterns, urging the need for advanced automated approaches to enhance MI detection. In this study, we strive to advance MI detection by proposing a hybrid approach that combines the strengths of ResNet and Vision Transformer (ViT) models, leveraging global and local features for improved accuracy. We introduce a slim-model ViT design with multibranch networks and channel attention mechanisms to enhance patch embedding extraction, addressing ViT's limitations. By training data through both ResNet and modified ViT models, we incorporate a dual-pathway feature extraction strategy. The fusion of global and local features addresses the challenge of robust feature vector creation. Our approach showcases enhanced learning capabilities through modified ViT architecture and ResNet architecture. The dual-pathway training enriches feature extraction, culminating in a comprehensive feature vector. Preliminary results demonstrate significant potential for accurate detection of MI. Our study introduces a hybrid ResNet-ViT model for advanced MI detection, highlighting the synergy between global and local feature extraction. This approach holds promise for elevating MI classification accuracy, with implications for improved patient care. Further validation and clinical applicability exploration are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883929PMC
http://dx.doi.org/10.1038/s41598-024-54846-8DOI Listing

Publication Analysis

Top Keywords

global local
16
local features
12
feature extraction
12
hybrid resnet-vit
8
myocardial infarction
8
detection study
8
vit models
8
modified vit
8
feature vector
8
global
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!