Developing strategies that emulate the killing mechanism of neutrophils, which involves the enzymatic cascade of superoxide dismutase (SOD) and myeloperoxidase (MPO), shows potential as a viable approach for cancer therapy. Nonetheless, utilizing natural enzymes as therapeutics is hindered by various challenges. While nanozymes have emerged for cancer treatment, developing SOD-MPO cascade in one nanozyme remains a challenge. Here, we develop nanozymes possessing both SOD- and MPO-like activities through alloying Au and Pd, which exhibits the highest cascade activity when the ratio of Au and Pd is 1:3, attributing to the high d-band center and adsorption energy for superoxide anions, as determined through theoretical calculations. The AuPd alloy nanozymes exhibit excellent tumor therapeutic performance and safety in female tumor-bearing mice, with safety attributed to their tumor-specific killing ability and renal clearance ability caused by ultrasmall size. Together, this work develops ultrasmall AuPd alloy nanozymes that mimic neutrophil enzymatic cascades for catalytic treatment of tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884023 | PMC |
http://dx.doi.org/10.1038/s41467-024-45668-3 | DOI Listing |
Adv Healthc Mater
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
High-entropy alloy (HEA) nanoparticles possess finely tunable and multifunctional catalytic activity due to their extremely diverse adsorption sites. Their unique properties enable HEA nanoparticles to mimic the complex interactions of the redox homeostasis system, which is composed of cascade and multiple enzymatic reactions. The application of HEAs in mimicking complex enzymatic systems remains relatively unexplored, despite the importance of regulating biological redox reactions.
View Article and Find Full Text PDFSmall
December 2024
Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China.
Mikrochim Acta
October 2024
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Uniform PtCoRuRhFe high-entropy alloy nanoflowers (HEANFs) were fabricated by a simple wet-chemical co-reduction method in oleylamine for quantitative colorimetric determination of captopril (CAP) based on multi-site synergistic signal amplification. Specifically, the peroxidase mimetic activity of the PtCoRuRhFe HEANFs was examined through catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation, whose catalytic mechanism was investigated by electron paramagnetic resonance (EPR) spectroscopy. The role of the ·O was figured out during the catalytic procedure.
View Article and Find Full Text PDFSmall
October 2024
Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
Altered redox homeostasis has long been observed in cancer cells, which can be exploited for therapeutic benefits. However, reactive oxygen species (ROS) pleiotropy coupling with reductive adaptation in cancer cells poses a formidable challenge for redox dyshomeostasis-based cancer therapy. Herein, a AuPd alloying nanozyme-glutathione (GSH) biosynthesis inhibitor co-delivery system (B-BMES) is developed using dendritic SiO as a matrix to target cancer redox homeostasis.
View Article and Find Full Text PDFDalton Trans
October 2024
Life Science Instrumentation Center, College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
The enzyme-like activity of noble metal nanomaterials has been widely demonstrated. However, as an important noble metal, iridium (Ir) and its alloy nanomaterials have been less studied, particularly regarding the effect of Ir content on enzyme-like activity. Here, we demonstrated for the first time that a low Ir content can greatly improve the peroxidase-like activity of Pt-based nanozymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!