Nacre-inspired starch-based bioplastic with excellent mechanical strength and electromagnetic interference shielding.

Carbohydr Polym

Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China; College of Home and Art Design, Northeast Forestry University, Harbin 150040, China. Electronic address:

Published: May 2024

Bioplastics have aroused significant interest in researchers to relieve the serious environmental pollution caused by the ubiquity of petroleum-based plastics. However, it remains a great challenge to construct functional bioplastics with excellent mechanical strength, water resistance, and heat resistance. Inspired by the interesting structure of nacre, a novel starch-based bioplastic was prepared via a self-assembly technique, using 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers modified starch, nano-montmorillonite, and reduced graphene oxide as raw materials. Due to the unique layered structure and rich interfacial interaction, the starch-based bioplastic exhibited excellent mechanical properties, while the tensile strength was up to 37.39 MPa. Furthermore, it represented outstanding water resistance, heat resistance, repairability, renewability and biodegradability. Especially, the starch-based bioplastic demonstrated a strong electromagnetic interference shielding effectiveness (EMI SE), which was higher than 35 dB with a thickness of 0.5 mm. These powerful properties provided the possibility for functional applications of starch-based bioplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.121888DOI Listing

Publication Analysis

Top Keywords

starch-based bioplastic
16
excellent mechanical
12
mechanical strength
8
electromagnetic interference
8
interference shielding
8
water resistance
8
resistance heat
8
heat resistance
8
nacre-inspired starch-based
4
bioplastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!