Chitosan nanocomposites as a nano-bio tool in phytopathogen control.

Carbohydr Polym

2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India.

Published: May 2024

Chitosan, an economically viable and versatile biopolymer, exhibits a wide array of advantageous physicochemical and biological properties. Chitosan nanocomposites, formed by the amalgamation of chitosan or chitosan nanoparticles with other nanoparticles or materials, have garnered extensive attention across agricultural, pharmaceutical, and biomedical domains. These nanocomposites have been rigorously investigated due to their diverse applications, notably in combatting plant pathogens. Their remarkable efficacy against phytopathogens has positioned them as a promising alternative to conventional chemical-based methods in phytopathogen control, thus exploring interest in sustainable agricultural practices with reduced reliance on chemical interventions. This review aims to highlight the anti-phytopathogenic activity of chitosan nanocomposites, emphasizing their potential in mitigating plant diseases. Additionally, it explores various synthesis methods for chitosan nanoparticles to enhance readers' understanding. Furthermore, the analysis delves into elucidating the intricate mechanisms governing the antimicrobial effectiveness of these composites against bacterial and fungal phytopathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.121858DOI Listing

Publication Analysis

Top Keywords

chitosan nanocomposites
12
phytopathogen control
8
chitosan nanoparticles
8
chitosan
7
nanocomposites nano-bio
4
nano-bio tool
4
tool phytopathogen
4
control chitosan
4
chitosan economically
4
economically viable
4

Similar Publications

Smart packaging, also known as intelligent packaging, is responsive to external stimuli, moisture, light, oxygen, heat, pH, and bacterial growth. In this study, polyvinyl alcohol/nanochitosan/phycocyanin nanocomposite (PVA/NCH/PC-NC) for fish fillets of Oncorhynchus mykiss rainbow trout coating was prepared. Five treatments were prepared over a period of 14 days (0, 1, 7 and 14 days) under treatments of T: fish coated with PVA/NCH-NC without PC; T, T T and T fish coated with PVA/NCH/PC-NC (0.

View Article and Find Full Text PDF

Preparation of chitosan/lignin nanoparticles-based nanocomposite films with high-performance and improved physicochemical properties for food packaging applications.

Int J Biol Macromol

December 2024

Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France. Electronic address:

Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared.

View Article and Find Full Text PDF

Evaluation of chitosan/diosgenin-infused manganese dioxide nanocomposite for highly effective photocatalytic and antibacterial activity.

Int J Biol Macromol

December 2024

Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.

The efficacy of the nanocomposite of manganese dioxide and diosgenin-incorporated chitosan (MnO/Dio@CS) was assessed by studying the photodegradation of two organic dyes, Acid Green (AG) and Malachite Green Oxalate (MGO), under visible light irradiation. The synthesized MnO/Dio@CS nanocomposites were characterized by Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis spectroscopy. The MnO/Dio@CS nanocomposites exhibited exceptional photocatalytic efficacy, prolonged durability, and quick degradation of the dye solution to 87.

View Article and Find Full Text PDF

Aim & Background: Increased efficacy with reduced side effects in cancer treatment is achieved through targeted distribution of anti-cancer medications. Because of their biocompatibility, biodegradability, low toxicity, and target ability under magnetic field, magnetic nanoparticles (MNP) based chitosan nanocomposite have attracted attention among other delivery technologies.

Methodology: MNPs were synthesised using the co-precipitation method.

View Article and Find Full Text PDF

We explored the feasibility of a self-assembled chitosan nanocomposite incorporating cerium oxide/nanoceria and superparamagnetic iron oxide nanoparticles (Chit-IOCO NPs), conjugated with methotrexate (MTX) and Cy5 dye, as an integrated cancer theranostic nanosystem (Chit-IOCO-MTX-Cy5). In this system, nanoceria serves as an anti-cancer agent, while the superparamagnetic iron oxide nanoparticles function as a negative contrast agent for MR imaging. This dual metal oxide nanocomposite is conjugated with MTX which is a structural analogue of folate, serving both as a targeting mechanism for folate receptors on cancer cells and as a chemotherapeutic drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!