Interfacial jamming of surface-alkylated synthetic nanocelluloses for structuring liquids.

Carbohydr Polym

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. Electronic address:

Published: May 2024

Nanocelluloses derived from natural cellulose sources are promising sustainable nanomaterials. Previous studies have reported that nanocelluloses are strongly adsorbed onto liquid-liquid interfaces with the concurrent use of ligands and allow for the structuring of liquids, that is, the kinetic trapping of nonequilibrium shapes of liquids. However, the structuring of liquids using nanocelluloses alone has yet to be demonstrated, despite its great potential in the development of sustainable liquid-based materials that are biocompatible and environmentally friendly. Herein, we demonstrated the structuring of liquids using rectangular sheet-shaped synthetic nanocelluloses with surface alkyl groups. Synthetic nanocelluloses with ethyl, butyl, and hexyl groups on their surfaces were readily prepared following our previous reports via the self-assembly of enzymatically synthesized cello-oligosaccharides having the corresponding alkyl groups. Among the alkylated synthetic nanocelluloses, the hexylated nanocellulose was adsorbed and jammed at water-n-undecane interfaces to form interfacial assemblies, which acted substantially as an integrated film for structuring liquids. These phenomena were attributed to the unique structural characteristics of the surface-hexylated synthetic nanocelluloses; their sheet shape offered a large area for adsorption onto interfaces, and their controlled surface hydrophilicity/hydrophobicity enhanced the affinity for both liquid phases. Our findings promote the development of all-liquid devices using nanocelluloses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.121896DOI Listing

Publication Analysis

Top Keywords

synthetic nanocelluloses
20
structuring liquids
20
nanocelluloses
9
liquids nanocelluloses
8
alkyl groups
8
liquids
6
synthetic
5
structuring
5
interfacial jamming
4
jamming surface-alkylated
4

Similar Publications

As the rubber industry seeks sustainable alternatives to mitigate its environmental impact, this study introduces a biobased approach using polyfarnesene rubber reinforced with plasma-modified cellulose nanocrystals (MCNC) and nanofibers (MCNF). The nanocellulose was modified by plasma-induced polymerization using trans-β-farnesene and was characterized by FTIR, XPS, XRD, TGA, and SEM to confirm the grafting of farnesene-derived polymer chains onto the cellulose surface, demonstrating the successful modification and integration of the nanoparticles. Polyfarnesene bio-based rubbers were synthesized through two different polymerization techniques: solution-based coordination polymerization (PFA1) and emulsion-based free radical polymerization (PFA2).

View Article and Find Full Text PDF

3D Bioprinted Head and Neck Squamous Cell Carcinoma (HNSCC) Model Using Tunicate Derived Nanocellulose (NC) Bioink.

Adv Healthc Mater

January 2025

Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, 68167, Mannheim, Germany.

Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro.

View Article and Find Full Text PDF

Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications.

Sci Rep

January 2025

Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.

Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme.

View Article and Find Full Text PDF

Developing eco-friendly and effective flame retardants is crucial for enhancing the fire resistance of polymeric materials. This study developed a novel nitrogen‑phosphorus (NP) synergistic nanocellulose-based flame retardant (CNC-PEI-PA) by grafting polyethyleneimine (PEI) and phytic acid (PA) onto the CNC. CNC-PEI-PA demonstrated remarkable thermal stability, char-forming ability, and antibacterial activity.

View Article and Find Full Text PDF

Nanoarchitectonics of cello-oligosaccharides: A route toward artificial nanocelluloses.

Adv Colloid Interface Sci

February 2025

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. Electronic address:

Colloidal cellulose nanoparticles, or nanocelluloses, are derived from natural cellulose sources in a top-down manner via physical and/or chemical treatments that extract naturally occurring cellulose nanostructures. Naturally derived nanocelluloses have been successfully commercialized in various fields, and their potential is still being widely explored in materials science. Moreover, recent advances in nanoarchitectonics of low-molecular-weight cellulose, or cello-oligosaccharides, have opened new avenues for developing "artificial nanocelluloses".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!