Background: Precise preoperative localization of liver tumors facilitates successful surgical procedures, Intraoperative ultrasonography is a sensitive imaging modality. However, the presence of small non-palpable isoechoic intraparenchymal lesions may be challenging intraoperatively.

Methodology And Material Description: Onyx® is a non-adhesive liquid agent comprised of ethylene-vinyl alcohol usually used dissolved in dimethyl-sulfoxide and suspended micronized tantalum powder to provide contrast for visualization under fluoroscopy and ultrasonography and a macroscopic black shape. This embolization material has been increasingly used for the embolization of intracranial arteriovenous malformations. We present the novel application of Onyx® on liver surgery.

Current Status: We present the case of a female, 55 years-old, whose medical history revealed an elective sigmoidectomy (pT3N1a). After 17 months of follow up, by PET-CT scan, the patient was diagnosed of a small intraparenchymal hypo-attenuated 13 mm tumor located at segment V consistent with metachronous colorectal liver metastasis. Open metastasectomy was performed, ultrasonography-guided Onyx® infusion was delivered the day after, intraoperative ultrasonography showed a palpable hyperechoic material with a posterior acoustic shadowing artifact around the lesion. Onyx® is a promising new tool, without any previous application on liver surgery, feasible with advantages in small not palpable intraparenchymal liver lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15533506241236732DOI Listing

Publication Analysis

Top Keywords

localization liver
8
liver lesions
8
intraoperative ultrasonography
8
liver
6
onyx®
5
onyx® tool
4
tool intraoperative
4
intraoperative localization
4
lesions background
4
background precise
4

Similar Publications

Objectives: Our previous studies have found that low-frequency, low-pressure, weakly focused ultrasound (FUS) can induce acoustic droplet vaporization (ADV) of perfluoropentane (PFP) droplets and result in localized liver and prostate tissue controllable cavitation resonance and mechanical damage. To further investigate the mechanical erosion induced by ultrasound and locally injected phase-shift acoustic droplets in rabbit liver.

Methods: The liver of each rabbit was treated with perfluoromethylcyclopentane (PFMCP) alone, FUS combined with PFMCP (FUS + PFMCP), and FUS combined with PFP (FUS + PFP).

View Article and Find Full Text PDF

Background: Improvements in the clinical diagnostic use of magnetic resonance imaging (MRI) for the identification of liver disorders have been made possible by gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA). Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) technology is in high demand.

Objectives: The purpose of the study is to segment the liver using an enhanced multi-gradient deep convolution neural network (EMGDCNN) and to identify and categorize a localized liver lesion using a Gd-EOB-DTPA-enhanced MRI.

View Article and Find Full Text PDF

Aims: Aurora kinase A (AURKA) has been implicated in promoting myeloid and renal fibrosis. This study aimed to investigate the impact and underlying mechanism of AURKA on liver fibrosis and to assess the therapeutic potential of MLN8237, a small-molecule AURKA inhibitor, in preventing liver fibrosis in mice.

Methods: The research used bioinformatics analysis and immunohistochemistry staining on fibrotic liver tissues from human and mouse models to assess AURKA expression.

View Article and Find Full Text PDF

Background: Chordoma is a rare bone cancer arising from the embryonic notochord with special predilection to the axial skeleton. The locally destructive nature and metastatic potential of chordomas can lead to devastating outcomes in terms of survival. The purpose of this study was to examine potential risk factors predictive of metastatic disease at presentation and prognostic factors in patients with metastasis.

View Article and Find Full Text PDF

Background: Microbial cholesterol oxidase (ChoX) has wide clinical and industrial applications; therefore, many efforts are being made to identify promising sources. This study aimed to isolate a novel ChoX-producing bacterial strain from whey samples.

Results: The most efficient strain was selected based on extracellular ChoX-producing ability and characterized as Escherichia fergusonii (E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!