Cadmium (Cd) is detrimental to plant growth and threatens human health. Here, we investigated the potential for remediation of Cd-contaminated soil with high copper (Cu) background using Cd hyperaccumulator ecotype (HE) Sedum alfredii. We assessed effects of Cu on Cd accumulation, compartmentation and translocation in HE S. alfredii, and compared with those in a related non-accumulator ecotype (NHE). We found that Cu supply significantly induced Cd accumulation in roots and shoots of long-term soil-cultivated HE S. alfredii. A large fraction of root Cd was accumulated in the organelles, but a small fraction was stored in the cell wall. Importantly, Cu addition reduced Cd accumulation in the cell wall and the organelles in root cells. Furthermore, leaf cell capacity to sequestrate Cd in the organelles was greatly improved upon Cu exposure. We also found that genes involving metal transport and cell wall remodeling were distinctly regulated to mediate Cd accumulation in HE S. alfredii. These findings indicate that Cu-dependent decrease of root cell-wall-bound Cd, and stimulation of efflux/influx of organelle Cd transport in root and leaf cells plays a role in the dramatic Cd hyperaccumulation expressed in naturally survived HE S. alfredii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171024 | DOI Listing |
L., a medicinal plant renowned for its pharmaceutical alkaloids, has captivated scientific interest due to its rich secondary metabolite profile. This study explores a novel approach to manipulating alkaloid biosynthesis pathways by integrating virus-induced gene silencing (VIGS) with macerozyme enzyme pretreatment.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
Department of Mechanical Engineering Marshall University, Huntington, WV 25755, USA; Department of Biomedical Engineering Marshall University, Huntington, WV 25755, USA.
Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI.
Ca is a key nutrient for fruit quality due to its role in bonding with pectin in the cell wall, providing strength through cell-to-cell adhesion, thus increasing fruit firmness and extending post-harvest life. However, Ca accumulation is mostly limited to the initial stages of fruit development due to anatomical and physiological changes that occur as fruits develop. The objective of this study was to evaluate fruit transpiration, cuticle thickness, and pedicel vessel changes during cranberry fruit development and the effect these parameters might have on Ca translocation.
View Article and Find Full Text PDFGen Thorac Cardiovasc Surg Cases
January 2025
Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan.
Background: With advancements in minimally invasive thoracic surgery techniques, such as video-assisted thoracoscopic surgery and robotic surgery, the design of vascular staplers has evolved to meet the requirements of these procedures. Consequently, newer generations of automatic staplers with improved handling and reduced size have been introduced, such as two-row staplers, which are more maneuverable and less bulky than their three-row counterparts.
Case Presentation: A 68-year-old man with lung cancer underwent a right middle and lower lobectomy due to tumor invasion into the central middle bronchial trunk, rendering the preservation of the middle lobe impossible.
World J Microbiol Biotechnol
January 2025
Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!