Calcium (Ca) is necessary for bone calcification, and Ca deficiency leads to decreased bone mineral density (BMD). Epidemiological studies have reported a correlation between Ca intake and BMD. Although the influences of Ca deficiency on BMD have been reported, the effects of Ca restriction on bone during high-fat diet ingestion remain unclear. Therefore, we hypothesized that high-fat diet ingestion would potentiate the negative effects of Ca restriction on bone. Sprague-Dawley strain male rats (aged 11 weeks) were divided into 4 groups: basic control diet (Cont.) (11% lipid energy rate, 0.5% calcium), basic control diet with Ca restriction (CaR) (11% lipid energy rate, 0.02% calcium), high-fat diet (HF) (40% lipid energy rate, 0.5% calcium), and high-fat diet with Ca restriction (HFCaR) (40% lipid energy rate, 0.02% calcium). At 28 days after starting the experimental diets, body weights were higher in the high-fat diet groups (HF and HFCaR) than in the standard-fat diet groups (Cont. and CaR) on 2-way analysis of variance. The apparent Ca absorption rate in the Ca-restricted groups (CaR and HFCaR) was higher than in the Ca-sufficient groups (Cont. and HF). BMD and bone strength parameters of the femur and lumbar vertebrae in the Ca-restricted groups were markedly lower than in the Ca-sufficient groups, whereas there were no significant differences between the standard-fat diet and HF diet groups. These results suggest that 28 days of Ca restriction increases the risk of bone fracture and osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nutres.2024.01.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!