Instance segmentation plays an important role in the automatic diagnosis of cervical cancer. Although deep learning-based instance segmentation methods can achieve outstanding performance, they need large amounts of labeled data. This results in a huge consumption of manpower and material resources. To solve this problem, we propose an unsupervised cervical cell instance segmentation method based on human visual simulation, named HVS-Unsup. Our method simulates the process of human cell recognition and incorporates prior knowledge of cervical cells. Specifically, firstly, we utilize prior knowledge to generate three types of pseudo labels for cervical cells. In this way, the unsupervised instance segmentation is transformed to a supervised task. Secondly, we design a Nucleus Enhanced Module (NEM) and a Mask-Assisted Segmentation module (MAS) to address problems of cell overlapping, adhesion, and even scenarios involving visually indistinguishable cases. NEM can accurately locate the nuclei by the nuclei attention feature maps generated by point-level pseudo labels, and MAS can reduce the interference from impurities by updating the weight of the shallow network through the dice loss. Next, we propose a Category-Wise droploss (CW-droploss) to reduce cell omissions in lower-contrast images. Finally, we employ an iterative self-training strategy to rectify mislabeled instances. Experimental results on our dataset MS-cellSeg, the public datasets Cx22 and ISBI2015 demonstrate that HVS-Unsup outperforms existing mainstream unsupervised cervical cell segmentation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!