Black carbon (BC) significantly affects climate, environmental quality, and human health. This study utilised Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), which can compensate for the shortcomings of ground BC monitoring in spatial-temporal distribution to study the pollution characteristics of BC and potential pollution sources in a typical industrial city (Xinxiang) with serious air pollution in northern China. The results showed that average daily ground observation and MERRA-2 concentration of BC of 7.33 μg m and 9.52 μg m. The mean BC concentration derived from MERRA-2 reanalysis data was higher than ground measurement due to resolution limitations and pollution from the northern regions. The reliability of the MERRA-2 data was confirmed through correlation analysis. Consideration of the spatial distribution of BC from MERRA-2 and incorporating the potential source contribution function (PSCF), concentration-weighted trajectory (CWT), and emission inventory, other possible source areas and primary sources of BC in Xinxiang were investigated. The results indicated that implementing transportation and residential emission control measures in Henan Province and its surrounding provinces, such as Hebei Province, will effectively decrease the BC level in Xinxiang City. A passively smoked cigarettes model was used to evaluate the risk of BC exposure. The percentage of lung function decrement (PLFD) was the highest in school-age children, while the impact on lung cancer (LC) health risk was comparatively lower. Notably, the BC health risk in Xinxiang was lower than in most cities across Asia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!