Objective: Metabolic-associated fatty liver disease (MAFLD) is the most prevalent liver disease, whereas type 2 diabetes mellitus (T2DM) is considered an independent risk factor for MAFLD incidence. Taohe Chengqi decoction (THCQ) is clinically prescribed for T2DM treatment; however, the hepatoprotective effect of THCQ against MAFLD is still unknown. This study intended to elucidate the therapeutic effect of THCQ on T2DM-associated MAFLD and to investigate the underlying mechanisms.

Methods: THCQ lyophilized powder was prepared and analyzed by UHPLC-MS/MS. A stable T2DM mouse model was established by high-fat diet (HFD) feeding combined with streptozotocin (STZ) injection. The T2DM mice were administered THCQ (2.5 g/kg or 5 g/kg) to explore the pharmacological effects of THCQ on T2DM-associated MAFLD. Liver tissue transcriptome was analyzed and the participatory roles of PPARα/γ pathways were verified both in vivo and in vitro. Serum metabolome analysis was used to explore the metabolome changes and skeletal muscle branched chain amino acid (BCAA) catabolic enzymes were further detected. Moreover, an AAV carrying BCKDHA shRNA was intramuscularly injected to verify the impact of THCQ on skeletal muscle BCAA catabolism and the potential therapeutic outcome on hepatic steatosis.

Results: THCQ improved hepatic steatosis in MAFLD. RNA-sequencing analysis showed dysregulation in the hepatic PPARγ-related fatty acid synthesis, while PPARα-dependent fatty acid oxidation was elevated following THCQ treatment. Interestingly, in vitro analyses of these findings showed that THCQ had minor effects on fatty acid oxidation and/or synthesis. The metabolomic study revealed that THCQ accelerated BCAA catabolism in the skeletal muscles, in which knockdown of the BCAA catabolic enzyme BCKDHA diminished the THCQ therapeutic effect on hepatic steatosis.

Conclusion: This study highlighted the potential therapeutic effect of THCQ on hepatic steatosis in MALFD. THCQ upregulated fatty acid oxidation and reduced its synthesis via restoration of PPARα/γ pathways in HFD/STZ-induced T2DM mice, which is mediated through augmenting BCKDH activity and accelerating BCAA catabolism in the skeletal muscles. Overall, this study provided in-depth clues for "skeletal muscles-liver communication" in the therapeutic effect of THCQ against hepatic steatosis. These findings suggested THCQ might be a potential candidate against T2DM-associated MAFLD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2023.155315DOI Listing

Publication Analysis

Top Keywords

thcq
16
fatty acid
16
liver disease
12
catabolism skeletal
12
skeletal muscles
12
therapeutic thcq
12
t2dm-associated mafld
12
bcaa catabolism
12
hepatic steatosis
12
acid oxidation
12

Similar Publications

Taohe Chengqi decoction improves diabetic cognitive dysfunction by alleviating neural stem cell senescence through HIF1α-driven metabolic signaling.

Phytomedicine

December 2024

Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:

Objective: Type 2 diabetes mellitus (T2DM) is characterized by numerous long-term complications, in which progressive cognitive decline represents a significant risk factor for dementia and other neurodegenerative disorders. Taohe Chengqi decoction (THCQ) is a common traditional Chinese formula for treating T2DM; however, the neuroprotective effect of THCQ on diabetes-associated cognitive dysfunction remains unclear. Hence, the present study investigated the therapeutic effects of THCQ on cognitive impairment associated with T2DM and elucidated the underlying mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Preclinical studies suggest that combining MEK inhibition with autophagy or CDK4/6 targeting may be beneficial for pancreatic cancer (PDAC) patients.
  • A retrospective analysis of 34 patients treated with trametinib combined with hydroxychloroquine (THCQ) or palbociclib (TP) was conducted to evaluate the effectiveness of these regimens.
  • Results showed that both combinations were ineffective, with most patients experiencing disease progression within a short time frame, highlighting the need for better treatment strategies for advanced PDAC with specific genetic mutations.
View Article and Find Full Text PDF

Exploring the anti-inflammatory and immune regulatory effects of Taohe Chengqi decoction in sepsis-induced lung injury.

J Ethnopharmacol

October 2024

Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Clinical Medicine, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood.

Aim Of The Study: This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury.

View Article and Find Full Text PDF

Objective: Metabolic-associated fatty liver disease (MAFLD) is the most prevalent liver disease, whereas type 2 diabetes mellitus (T2DM) is considered an independent risk factor for MAFLD incidence. Taohe Chengqi decoction (THCQ) is clinically prescribed for T2DM treatment; however, the hepatoprotective effect of THCQ against MAFLD is still unknown. This study intended to elucidate the therapeutic effect of THCQ on T2DM-associated MAFLD and to investigate the underlying mechanisms.

View Article and Find Full Text PDF

Pharmacological inhibition of KRAS>RAF>MEK1/2>ERK1/2 signaling has provided no clinical benefit to patients with pancreatic ductal adenocarcinoma (PDAC). Interestingly, combined inhibition of MEK1/2 (with trametinib [T]) plus autophagy (with chloroquine [CQ] or hydroxychloroquine [HCQ]) demonstrated striking anti-tumor effects in preclinical models and in a patient (Patient 1). However, not all patients respond to the T/HCQ regimen, and Patient 1 eventually developed resistant disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!