Understanding how mechanical damage propagates in load-bearing tissues such as skin, tendons and ligaments, is key to developing regenerative medicine solutions for when these tissues fail. For collagenous tissues in particular, damage is typically assessed after mechanical testing using a broad range of microscopy techniques because standard tensile testing systems do not have the time and force sensitivity to resolve mechanical damage events. Here we introduce an interferometric detection scheme to measure the displacement of a cantilever with a resolution of 0.03% of full scale at a sampling rate of 5000 samples/s. The system is validated using collagen fibers engineered to mimic mammalian tendons. The system can detect sudden decrease in force due to slippage between collagen filaments, one to five microns in diameter, within a fiber in air. It can also detect yield events associated with local collagen unfolding or sliding within collagen fibrils within a fiber in liquid. This is opening the road to the sub-failure study of damage propagation within a broad range of hierarchical biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106467DOI Listing

Publication Analysis

Top Keywords

damage events
8
mechanical damage
8
broad range
8
damage
5
collagen
5
interferometric-based tensile
4
tensile tester
4
tester resolve
4
resolve damage
4
events reconstituted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!