Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield.

Plant Biotechnol J

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, P.R. China.

Published: July 2024

Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182599PMC
http://dx.doi.org/10.1111/pbi.14309DOI Listing

Publication Analysis

Top Keywords

silique number
36
number
10
brassica napus
8
silique
8
trait genetic
8
regulating silique
8
number arabidopsis
8
number rapeseed
8
rapeseed silique
8
genetic
6

Similar Publications

Background: Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina.

View Article and Find Full Text PDF

Nanotechnology represents a burgeoning field of science that enables advanced research across various domains. In recent years, there has been a notable increase in the utilization of silver nanoparticles (AgNPs) for diverse agricultural and industrial applications. Similarly, copper nanoparticles (CuNPs) have significant attention in agriculture due to their cost-effectiveness and practicality.

View Article and Find Full Text PDF

Deciphering the Arf (ADP-ribosylation factor) gene family in Brassica napus L.: Genome-wide insights into duplication, expression, and rapeseed yield enhancement.

Int J Biol Macromol

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China. Electronic address:

The Arf gene family is essential for crop growth and development by regulating vesicle transport. However, few studies exist on the role of Arfs in the growth and yield formation of Brassica napus. Here we provide an exhaustive account of the phylogeny and expression of the 66 Arfs in rapeseed.

View Article and Find Full Text PDF

Introduction: Turnip rape is recognized as an oilseed crop contributing to environmentally sustainable agriculture via integration into crop rotation systems. Despite its various advantages, the crop's cultivation has declined globally due to a relatively low productivity, giving way to other crops. The use of genomic tools could enhance the breeding process and accelerate genetic gains.

View Article and Find Full Text PDF

Genome-Wide Characterization of Alfin-like Genes in and Functional Analyses of and in Response to Nitrogen and Phosphorus Deficiency.

Plants (Basel)

September 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.

Article Synopsis
  • Alfin-like proteins (ALs) are a unique family of transcription factors in plants that play a key role in growth, development, and response to environmental stress.
  • Researchers identified 30 ALs in the 'Zhongshuang 11' genome, which are distributed across 15 chromosomes and categorized into four groups based on their structural features.
  • Analysis showed that these proteins are influenced by nutrient availability, with specific ALs enhancing root growth under low nutrient conditions while exhibiting varying effects on root hair development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!