Purpose: Growth differentiating Factor 15 (GDF15) is linked to several cancers, but its effect on chemoresistance in colorectal cancer (CRC) remains unclear. Here, we investigated the role of GDF15 in the chemotherapeutic response of CRC patients to oxaliplatin (L-OHP).

Methods: GDF15 levels in serum and tumour tissues were detected in CRC patients have received L-OHP-based neoadjuvant chemotherapy. The effects of GDF15 neutralization or GDF15 knockdown on cell proliferation, apoptosis and intracellular reactive oxygen species (ROS) levels were analysed in vitro and in vivo. Co-immunoprecipitation (Co-IP), Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays were used to explore the interaction between GDF15 and Nrf2.

Results: In this study, we found that GDF15 alleviates oxidative stress to induce chemoresistance of L-OHP in CRC. Mechanically, GDF15 posttranscriptionally regulates protein stability of Nrf2 through the canonical PI3K/AKT/GSK3β signaling pathway, and in turn, Nrf2 acts as a transcription factor to regulate GDF15 expression to form a positive feedback loop, resulting in the maintenance of redox homeostasis balance in CRC. Furthermore, a positive correlation between GDF15 and Nrf2 was observed in clinical CRC samples, and simultaneous overexpression of both GDF15 and Nrf2 was associated with poor prognosis in CRC patients treated with L-OHP. Simultaneous inhibition of both GDF15 and Nrf2 significantly increases the response to L-OHP in an L-OHP-resistant colorectal cancer cells-derived mouse xenograft model.

Conclusion: This study identified a novel GDF15-Nrf2 positive feedback loop that drives L-OHP resistance and suggested that the GDF15-Nrf2 axis is a potential therapeutic target for the treatment of L-OHP-resistant CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-024-00918-wDOI Listing

Publication Analysis

Top Keywords

gdf15
13
feedback loop
12
colorectal cancer
12
crc patients
12
gdf15 nrf2
12
redox homeostasis
8
crc
8
positive feedback
8
nrf2
6
gdf15 induces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!