Effects of atrazine and S-metolachlor on stream periphyton taxonomic and fatty acid compositions.

Ecotoxicology

Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9, Quebec City, QC, Canada.

Published: March 2024

Extensive pesticide use for agriculture can diffusely pollute aquatic ecosystems through leaching and runoff events and has the potential to negatively affect non-target organisms. Atrazine and S-metolachlor are two widely used herbicides often detected in high concentrations in rivers that drain nearby agricultural lands. Previous studies focused on concentration-response exposure of algal monospecific cultures, over a short exposure period, with classical descriptors such as cell density, mortality or photosynthetic efficiency as response variables. In this study, we exposed algal biofilms (periphyton) to a concentration gradient of atrazine and S-metolachlor for 14 days. We focused on fatty acid composition as the main concentration-response descriptor, and we also measured chlorophyll a fluorescence. Results showed that atrazine increased cyanobacteria and diatom chlorophyll a fluorescence. Both herbicides caused dissimilarities in fatty acid profiles between control and high exposure concentrations, but S-metolachlor had a stronger effect than atrazine on the observed increase or reduction in saturated fatty acids (SFAs) and very long-chain fatty acids (VLCFAs), respectively. Our study demonstrates that two commonly used herbicides, atrazine and S-metolachlor, can negatively affect the taxonomic composition and fatty acid profiles of stream periphyton, thereby altering the nutritional quality of this resource for primary consumers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-024-02738-yDOI Listing

Publication Analysis

Top Keywords

atrazine s-metolachlor
16
fatty acid
16
stream periphyton
8
negatively affect
8
chlorophyll fluorescence
8
acid profiles
8
fatty acids
8
fatty
6
s-metolachlor
5
atrazine
5

Similar Publications

There is growing interest in transcriptomic points of departure (tPOD) values from in vitro experiments as an alternative to animal test method. The study objective was to calculate tPODs in rainbow trout gill cells (RTgill-W1 following OECD 249) exposed to pesticides, and to evaluate how these values compare to fish acute and chronic toxicity data. Cells were exposed to one fungicide (chlorothalonil), ten herbicides (atrazine, glyphosate, imazethapyr, metolachlor, diquat, s-metolachlor, AMPA, dicamba, dimethenamid-P, metribuzin), eight insecticides (chlorpyrifos, diazinon, permethrin, carbaryl, clothianidin, imidacloprid, thiamethoxam, chlorantraniliprole), and OECD 249 positive control 3,4-dichloroaniline.

View Article and Find Full Text PDF

Atrazine and S-metolachlor are herbicides widely used on corn and soybean crops where they are sometimes found in concentrations of concern in nearby aquatic ecosystems, potentially affecting autotrophic organisms. The aim of this study was to investigate the response of the green algae Enallax costatus, the diatom Gomphonema parvulum and a culture of the cyanobacteria Phormidium sp. and Microcystis aeruginosa, to atrazine and S-metolachlor alone and in mixture (0, 10, 100 and 1000 µg.

View Article and Find Full Text PDF

Tolerance and phytoremediation capacity of atrazine and S-metolachlor by two duckweeds.

Environ Sci Pollut Res Int

October 2024

Ecotoxicology of Aquatic Microorganisms Laboratory, EcotoQ, GRIL, TOXEN, Department of Biological Sciences, Université du Québec À Montréal, Montréal Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.

The phytotoxicity and removal of atrazine and S-metolachlor in sterile duckweed systems were estimated in this study. Herbicides were added at environmentally relevant ranges: 0-400 µg/L for atrazine or 0-200 µg/L for S-metolachlor in systems with Spirodela polyrhiza or Lemna minor. Toxicity biomarkers, i.

View Article and Find Full Text PDF

Microalgae are unicellular, photosynthetic organisms in aquatic environments and are sensitive to water quality and contaminants. While green algae and diatoms are widely used for toxicity assessments, there is a relatively limited amount of toxicity data available for freshwater dinoflagellates. Here, we evaluated the sub-lethal effects of the metals Cu, Cr, Ni, and Zn and the herbicides atrazine and S-metolachlor on the freshwater dinoflagellate Palatinus apiculatus.

View Article and Find Full Text PDF

The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20 % and 40 %) conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!