The piezoelectric properties of natural bone and their influence on bone growth have inspired researchers to study a range of bio-piezoelectric composite materials. By exploring these materials, researchers aim to understand better, how piezoelectricity can be controlled to promote bone growth and tissue regeneration. In this work, the prominent piezoelectric material, (Ba, Zr) TiO -x(Ba,Ca)TiO , abbreviated as BCZT, was selected as a possible bone growth enhancer in hydroxyapatite (HA) scaffolds. Initially, BCZT and hydroxyapatite (HA) powders were synthesized using the sol-gel method. Subsequently, various composite samples of BCZT-xHA were prepared using the conventional solid-state method. After sintering the samples at 1300°C, the phase structure, microstructure, density, and electrical properties were characterized. The samples' compressive strength was determined by analyzing the outcomes of basic compression tests. The biological behavior of the samples in terms of in vitro simulated body fluid immersion and MTT tests were evaluated. Our results revealed that among the BCZT-xHA samples, the BCZT-20HA sample had the best composition, considering its electrical, mechanical, and biological properties. A d value of 10 pC/N, dielectric permittivity of 110, and the g equal to 10.27 mV m/N resulted in the output voltage of 1.03 V. The results of the MTT assay test confirmed the noncytotoxic nature of the samples with the highest optical density in the BCZT-20HA sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389554 | PMC |
http://dx.doi.org/10.1002/jbm.b.35392 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China.
Background: The Clinical Frailty Scale (CFS) is a tool to assess the overall health of older adults. There are few reports of CFS and prognosis of ankle fracture. The objective of this study was to determine the predictive power of the CFS for adverse clinical and radiographic outcomes after surgery in elderly patients with trimalleolar fractures.
View Article and Find Full Text PDFBMC Oral Health
January 2025
The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China.
Objective: To investigate the effects of modified twin-block appliances (MTBA) on obstructive sleep apnea (OSA) and mandibular retrognathia and the changes in the upper airway, hyoid bone position, and hypoxia-related inflammatory marker levels in children with OSA.
Methods: This study included children with OSA and mandibular retrognathia and those with class I without mandibular retrognathia (n = 35 each). The experimental group comprised children with OSA and mandibular retrognathia managed using MTBA.
Ital J Pediatr
January 2025
Department of Pediatrics, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, Pavia, 27100, Italy.
Background: Chronic Nonbacterial Osteomyelitis (CNO) is a rare auto-inflammatory disease that mainly affects children, and manifests with single or multiple painful bone lesions. Due to the lack of specific laboratory markers, CNO diagnosis is a matter of exclusion from different conditions, first and foremost bacterial osteomyelitis and malignancies. Whole Body Magnetic Resonance (WBMR) and bone biopsy are the gold standard for the diagnosis.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Intensive Care Medicine, Army Medical Center of PLA, No. 10 Changjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
Background: Pregnancy-associated atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by uncontrolled activation of the complement system during pregnancy or the postpartum period. In the intensive care unit, aHUS must be differentiated from sepsis-related multiple organ dysfunction, thrombotic thrombocytopenic purpura (TTP), hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome. Early recognition of aHUS is critical for effective treatment and improved prognosis.
View Article and Find Full Text PDFMol Med
January 2025
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!