Microcystin-LR (MIC-LR) is a toxin which the mechanism of intoxication involves oxidative stress. Urolithin A (URO-A) is a metabolic product from the colonic fermentation of ellagic acid with antioxidant potential. This study aimed to evaluate the putative protective effect of URO-A against MIC-LR toxicity in C6 cells. C6 cells were incubated with MIC-LR (1 and 10 μM) and/or URO-A (3, 30, 60 and 100 μM) for 24 h. MIC-LR induced reactive species (RS) generation, depletion of total thiol (SH) groups, and survival loss when compared with the control group. Also, at 10 μM, MIC-LR induced CAT activity inhibition. URO-A caused CAT activity inhibition and showed a trend to increase RS generation (60 and 100 μM) per se. URO-A at 3 μM completely attenuated the RS generation and the impairment in SH groups caused by MIC-LR. Our results demonstrated that URO-A might offer a protective effect against toxicity caused by MIC-LR in glial cells by restoring the levels of RS and thiol groups.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202301287DOI Listing

Publication Analysis

Top Keywords

mic-lr induced
8
thiol groups
8
cat activity
8
activity inhibition
8
caused mic-lr
8
mic-lr
7
uro-a
6
urolithin partially
4
partially protects
4
protects oxidative
4

Similar Publications

Microcystin-LR (MIC-LR) is a toxin which the mechanism of intoxication involves oxidative stress. Urolithin A (URO-A) is a metabolic product from the colonic fermentation of ellagic acid with antioxidant potential. This study aimed to evaluate the putative protective effect of URO-A against MIC-LR toxicity in C6 cells.

View Article and Find Full Text PDF

Microcystin-LR exposure induces oxidative damage in Caenorhabditis elegans: Protective effect of lutein extracted from marigold flowers.

Food Chem Toxicol

November 2017

Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Microcystin-LR (MIC-LR) is a hepatotoxin, with toxicity mechanisms linked to oxidative stress. Besides, neurotoxic effects of MIC-LR have recently been described. Herein, we evaluated the effects of environmentally important concentrations of MIC-LR (1, 10, 100, 250, and 500 μg/L) on oxidative stress markers and the survival rate of the nematode Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!