Organisms exhibit reversible physiological adjustments as a response to rapidly changing environments. Yet such plasticity of the phenotype is gradual and may lag behind environmental fluctuations, thereby affecting long-term average performance of the organisms. By supplying energy and essential compounds for optimal tissue building, food determines the range of possible phenotypic changes and potentially the rate at which they occur. Here, we assess how differences in the dietary supply of essential lipids modulate the phenotypic plasticity of an ectotherm facing thermal fluctuations. We use three phytoplankton strains to create a gradient of polyunsaturated fatty acid and sterol supply for Daphnia magna under constant and fluctuating temperatures. We used three different fluctuation periodicities to unravel the temporal dynamics of gradual plasticity and its long-term consequences for D. magna performance measured as juvenile somatic growth rate. In agreement with gradual plasticity theory, we show that in D. magna, fluctuation periodicity determines the differential between observed growth rates and those expected from constant conditions. Most importantly, we show that diet modulates both the size and the direction of the growth rate differential. Overall, we demonstrate that the nutritional context is essential for predicting ectotherm consumers' performance in fluctuating thermal environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.4263 | DOI Listing |
Front Genet
January 2025
Center of Cellular and Genetic Science, Henan Academy of Sciences, Zhengzhou, China.
High-altitude adaptation is a remarkable example of natural selection, yet the genomic and physiological adaptation mechanisms of Ethiopian highlanders remain poorly understood compared to their Andean and Tibetan counterparts. Ethiopian populations, such as the Amhara and Oromo, exhibit unique adaptive strategies characterized by moderate hemoglobin levels and enhanced arterial oxygen saturation, indicating distinct mechanisms of coping with chronic hypoxia. This review synthesizes current genomic insights into Ethiopian high-altitude adaptation, identifying key candidate genes involved in hypoxia tolerance and examining the influence of genetic diversity and historical admixture on adaptive responses.
View Article and Find Full Text PDFAm J Clin Exp Urol
December 2024
Department of Urology, Icahn School of Medicine at Mount Sinai New York, NY, USA.
Epithelial-mesenchymal transition (EMT) is a dynamic process of lineage plasticity in which epithelial cancer cells acquire mesenchymal traits, enabling them to metastasize to distant organs. This review explores the current understanding of how lineage plasticity and phenotypic reprogramming drive prostate cancer progression to lethal stages, contribute to therapeutic resistance, and highlight strategies to overcome the EMT phenotype within the prostate tumor microenvironment (TME). Emerging evidence reveals that prostate tumor cells can undergo lineage switching, adopting alternative growth pathways in response to anti-androgen therapies and taxane-based chemotherapy.
View Article and Find Full Text PDFEcol Evol
January 2025
Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources College of Biology and Environmental Sciences, Jishou University Jishou Hunan China.
Karst caves are a unique environment significantly different from the external environment; adaptation of cave-dwelling animals to the cave environment is often accompanied by shifts in the sensory systems. Aquatic and terrestrial leeches have been found in the karst caves. In this study, we conducted a transcriptome analysis on the cave-dwelling leech .
View Article and Find Full Text PDFOver lifetime, organisms can be repeatedly exposed to stress, shaping their phenotype. At certain, so-called sensitive phases, individuals might be more receptive to such stress, for example, nutritional stress. However, little is known about how plastic responses differ between individuals experiencing nutritional stress early versus later in life or repeatedly, particularly in species with distinct ontogenetic niches.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Australian Institute of Marine Science, Townsville, Queensland, Australia.
Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!