Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The six cylinder thermoregulatory model (SCTM) has been validated thoroughly for resting humans. This type of modeling is helpful to predict and develop guidance for safe performance of work and recreational activities. In the context of a warming global climate, updating the accuracy of the model for intense exercise in warm environments will help a wide range of individuals in athletic, recreational, and military settings. Three sets of previously collected data were used to determine SCTM accuracy. : two groups [large (LG) 91.5 kg and small (SM) 67.7 kg] of individuals performed 60 min of semirecumbent cycling in temperate conditions (25.1°C) at metabolic rates of 570-700 W. : two LG (100 kg) and SM (65.8 kg) groups performed 60 min of semirecumbent cycling in warm/hot environmental conditions (36.2°C) at metabolic rates of 590-680 W. : seven volunteers completed 8-km track trials (∼30 min) in cool (17°C) and warm (30°C) environments. The volunteers' metabolic rates were estimated to be 1,268 W and 1,166 W, respectively. For all datasets, SCTM-predicted core temperatures were found to be similar to the observed core temperatures. The root mean square deviations (RMSDs) ranged from 0.06 to 0.46°C with an average of 0.2°C deviation, which is less than the acceptance threshold of 0.5°C. Thus, the present validation shows that SCTM predicts core temperatures with acceptable accuracy during intense exercise in warm environments and successfully captures core temperature differences between large and small individuals. The SCTM has been validated thoroughly for resting humans in warm and cold environments and during water immersion. The present study further demonstrated that SCTM predicts core temperatures with acceptable accuracy during intense exercise up to 1,300 W in temperate and warm environments and captures core temperature differences between large and small individuals. SCTM is potentially useful to develop guidance for safe operation in athletic, military, and occupational settings during exposure to warm or hot environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286271 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00873.2023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!