Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O flux was diminished from 52 to 22 pmol/mg ( = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration. Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386984PMC
http://dx.doi.org/10.1152/ajprenal.00416.2023DOI Listing

Publication Analysis

Top Keywords

arterial disease
20
cardiac
16
conduit arterial
16
oxidative phosphorylation
16
ckd
14
chronic kidney
12
kidney disease
12
cardiac mitochondrial
12
disease
10
cardiac hypertrophy
8

Similar Publications

Importance: The prevalence of pharmacies owned by integrated insurers and pharmacy benefit managers (PBMs), or insurer-PBMs, is of growing regulatory concern. However, little is known about the role of these pharmacies in Medicare, in which pharmacy network protections may influence market dynamics.

Objective: To evaluate the prevalence of insurer-PBM-owned pharmacies and the extent to which insurer-PBMs steer patients to pharmacies they own in Medicare.

View Article and Find Full Text PDF

Objective: This study aimed to analyze the effect of a novel supervised exercise therapy (SET) program based on intermittent treadmill walking and circuit-based moderate-intensity functional training (MIFT) on walking performance and HRQoL in PAD patients.

Design: All participants underwent a 12-week SET that involved 15 to 30 minutes of treadmill walking followed by a 15-minute moderate-intensity functional training (MIFT) continued by 12-week of follow-up. Maximum walking distance (MWD), pain-free walking distance (PFWD), gait speed and estimated peak oxygen uptake (peak VO2) were calculated through the 6-minute walk test (6-MWT) and HRQoL through the Short Form-36 (SF-36) and the Vascular Quality of Life Questionnaire-6 (VascuQol-6).

View Article and Find Full Text PDF

[Management of acute coronary syndrome].

Herz

January 2025

Herzzentrum Leipzig, Universitätsklinik für Kardiologie, Strümpellstr. 39, 04289, Leipzig, Deutschland.

Coronary artery disease (CAD) is the leading cause of death worldwide. Acute coronary syndrome (ACS) encompasses a spectrum of diagnoses ranging from unstable angina pectoris to myocardial infarction with and without ST-segment elevation and frequently presents as the first clinical manifestation. It is crucial in this scenario to perform a timely and comprehensive assessment of patients by evaluating the clinical presentation, electrocardiogram and laboratory diagnostics using highly sensitivity cardiac troponin in order to initiate a timely and risk-adapted continuing treatment with immediate or early invasive coronary angiography.

View Article and Find Full Text PDF

Data on outcomes of extracorporeal membrane oxygenation (ECMO) are limited in patients with pulmonary atresia intact ventricular septum (PAIVS). The objective of this study was to describe the use of ECMO and the associated outcomes in patients with PAIVS. We retrospectively reviewed neonates with PAIVS who received ECMO between 2009 and 2019 in 19 US hospitals affiliated with the Collaborative Research for the Pediatric Cardiac Intensive Care Society (CoRe-PCICS).

View Article and Find Full Text PDF

Automated classification of coronary LEsions fRom coronary computed Tomography angiography scans with an updated deep learning model: ALERT study.

Eur Radiol

January 2025

Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.

Objectives: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagnostic performance of a recently updated deep learning model (CorEx-2.0) for quantifying coronary stenosis, compared separately with two expert CCTA readers as references.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!