A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GA-Sense: Sensor placement strategy for detecting leaks in water distribution networks based on time series flow and genetic algorithm. | LitMetric

AI Article Synopsis

  • The detection of leaks in time series flow systems is essential for optimizing industrial processes, especially when water demand patterns vary.
  • A novel method using a genetic algorithm (GA) is proposed to identify optimal sensor locations for leak detection, considering factors like flow patterns and leak characteristics.
  • This GA-based approach, termed GA-Sense, adapts over time to improve leak detection accuracy and efficiency compared to other techniques.

Article Abstract

The detection of leaks in time series flow systems is crucial for efficient and integrated industrial processes. This is especially true when daily demand patterns differ, as this results in fluctuations in the snapshots of water consumption that are commonly used as the basis for placing sensors to detect leaks. This paper introduces a novel method in which the genetic algorithm (GA) is applied to find optimal sensor locations and to enhance the accuracy of leak detection in time series flow data. The method consists of two steps. Firstly, the GA is used to identify the optimal sensor locations using a specific fitness function that accounts for flow patterns, system topology, and leak characteristics. The novelty of the proposed method lies in the weighting scheme of the fitness function, which takes into consideration the frequency of events and the magnitude of leaks at potential locations. Secondly, the selected sensor locations are integrated with an advanced time series data analysis to locate leaks. In this technique, the most consistently performing locations are dynamically selected over time, allowing the model to adapt to varying conditions to maintain optimal sensor placement. Experiments were conducted on a simulated time series flow system with known leak scenarios to evaluate the performance of the proposed method. The results demonstrated the superiority of our GA-based sensor placement strategy in terms of leak detection accuracy and efficiency compared to other methods.•We developed a model called GA-Sense for sensor placement strategy by considering flow patterns to maximize leak detection and localization capabilities.•GA-Sense uses time series data to find strategic sensor locations to identify abnormal flow patterns indicative of leaks.•This approach enhances the accuracy and efficiency of leak detection and localization compared to alternative methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879767PMC
http://dx.doi.org/10.1016/j.mex.2024.102612DOI Listing

Publication Analysis

Top Keywords

time series
24
sensor placement
16
series flow
16
sensor locations
16
leak detection
16
placement strategy
12
optimal sensor
12
flow patterns
12
ga-sense sensor
8
genetic algorithm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!