Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish.

Front Cell Dev Biol

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.

Published: February 2024

AI Article Synopsis

  • The craniofacial skeleton is crucial for essential functions in humans and other jawed vertebrates, making its proper development during embryogenesis vital for health and survival.
  • Craniofacial abnormalities are common congenital issues, such as cleft palate and craniosynostosis, emphasizing the importance of coordinated developmental processes that rely on specific cell signaling pathways like TGF-β and BMP.
  • Research using zebrafish models highlights the role of these signaling pathways in the stages of craniofacial development, the implications of mutations on human health, and their potential in studying related diseases, including joint disorders.

Article Abstract

Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879340PMC
http://dx.doi.org/10.3389/fcell.2024.1338070DOI Listing

Publication Analysis

Top Keywords

craniofacial development
16
craniofacial skeleton
12
zebrafish model
12
will cover
12
utility zebrafish
12
craniofacial
10
transforming growth
8
growth factor
8
factor beta
8
signaling craniofacial
8

Similar Publications

It's interesting to note that despite clinical improvements in upper airway dimensions, the maxillary, mandibular, and mandibular body lengths remained smaller than those of controls. This finding may represent an underlying neurocristopathy, which represents a deficiency in the population of neural crest cells available in the embryonic maxillary and mandibular processes de novo. Indeed, it is known that craniofacial dimensions in infants with malformations, such as cleft palate, are often smaller when compared to non-cleft counterparts.

View Article and Find Full Text PDF

Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals.

Cell Stem Cell

January 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. Electronic address:

Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source-embryos from same-sex parents-aiming to establish a stable, maintainable imprinting pattern de novo in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate.

View Article and Find Full Text PDF

Macrophage plasticity is critical for maintaining immune function and developing solid tumors; however, the macrophage polarization mechanism remains incompletely understood. Our findings reveal that Mg entry through distinct plasma membrane channels is critical to macrophage plasticity. Naïve macrophages displayed a previously unidentified Mg dependent current, and TRPM7-like activity, which modulates its survival.

View Article and Find Full Text PDF

Adapting a style based generative adversarial network to create images depicting cleft lip deformity.

Sci Rep

January 2025

Division of Plastic, Craniofacial and Hand Surgery, Sidra Medicine, and Weill Cornell Medical College, C1-121, Al Gharrafa St, Ar Rayyan, Doha, Qatar.

Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken.

View Article and Find Full Text PDF

Objective: To investigate whether differences in early cleft care increase risk of velopharyngeal insufficiency (VPI) after maxillary advancement.

Design: Retrospective cohort study.

Setting: Large pediatric tertiary care hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!