Social media has become increasingly important in shaping public vaccination views, especially since the COVID-19 outbreak. This paper uses bow-tie structure to analyse a temporal dataset of directed online social networks that represent the information exchange among anti-vaccination, pro-vaccination and neutral Facebook pages. Bow-tie structure decomposes a network into seven components, with two components, strongly connected component (SCC) and out-periphery component (OUT), emphasized in this paper: SCC is the largest strongly connected component, acting as an 'information magnifier', and OUT contains all nodes with a directed path from a node in SCC, acting as an 'information creator'. We consistently observe statistically significant bow-tie structures with different dominant components for each vaccination group over time. In particular, the anti-vaccination group has a large OUT, and the pro-vaccination group has a large SCC. We further investigate changes in opinions over time, as measured by fan count variations, using agent-based simulations and machine learning models. Across both methods, accounting for bow-tie decomposition better reflects information flow differences among vaccination groups and improves our opinion dynamics prediction results. The modelling frameworks we consider can be applied to any multi-stance temporal network and could form a basis for exploring opinion dynamics using bow-tie structure in a wide range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878806 | PMC |
http://dx.doi.org/10.1098/rsos.231792 | DOI Listing |
Risk Manag Healthc Policy
December 2024
Belt and Road Initiative Center for Chinese-European Studies (BRICCES), Guangdong University of Petrochemical Technology, Maoming, People's Republic of China.
Introduction: Psychosocial risks (PSRs) are identified as one of the main modern occupational safety issues, primarily related to occupational stress, and need to be reduced to safe levels in accordance with international requirements. The research purpose is to improve the process of managing the PSRs in the occupational safety and health management systems of employees, taking into account the impact of psychosocial dangers in accordance with the requirements of ISO 45001:2018 and ISO 45003:2021 standards.
Methods: To develop the process of managing the PSRs, a system analysis method is applied, which allows determining the structural relationships between the variable elements of dangerous psychosocial factors described in the ISO 45003:2021 standard.
The compression and integration of nonlinear optical processes to the nanoscale are expected to have significant implications for quantum optics, biology, and medicine. In this work, a composite metasurface consisting of a hollow-bow-tie-shaped metal metasurface and a patterned amorphous silicon metasurface is proposed. An external terahertz (THz) electric field enhanced by the hollow-bow-tie structure is employed to break the centrosymmetry, which allows the generation of optical second harmonic.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy.
Materials (Basel)
June 2024
Faculty of Materials Engineering, Silesian University of Technology, 8 Krasińskiego Str., 40-019 Katowice, Poland.
This article presents a study of metamaterial structures that exhibit auxetic properties. This unusual phenomenon of simultaneous orthogonal expansion of the metamaterial in tension, and vice versa in compression, with vertical and horizontal contraction, is explored for structures made of re-entrant unit cells. The geometry of such structures is analysed in detail, and the relationships are determined by the value of the Poisson's ratio.
View Article and Find Full Text PDFNPJ Syst Biol Appl
June 2024
Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
Bow-tie architecture is a layered network structure that has a narrow middle layer with multiple inputs and outputs. Such structures are widely seen in the molecular networks in cells, suggesting that a universal evolutionary mechanism underlies the emergence of bow-tie architecture. The previous theoretical studies have implemented evolutionary simulations of the feedforward network to satisfy a given input-output goal and proposed that the bow-tie architecture emerges when the ideal input-output relation is given as a rank-deficient matrix with mutations in network link intensities in a multiplicative manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!