Identification and manipulation of cellular energy regulation mechanisms may be a strategy to increase productivity in photosynthetic organisms. This work tests the hypothesis that polyphosphate synthesis and degradation play a role in energy management by storing or dissipating energy in the form of ATP. A polyphosphate kinase () knock-out strain unable to synthesize polyphosphate was generated in the cyanobacterium sp. PCC 6803. This mutant strain demonstrated higher ATP levels and faster growth than the wildtype strain in high-carbon conditions and had a growth defect under multiple stress conditions. In a strain that combined deletion with heterologous expression of ethylene-forming enzyme, higher ethylene productivity was observed than in the wildtype background. These results support the role of polyphosphate synthesis and degradation as an energy regulation mechanism and suggest that such mechanisms may be effective targets in biocontainment design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879606PMC
http://dx.doi.org/10.3389/fpls.2024.1342496DOI Listing

Publication Analysis

Top Keywords

polyphosphate kinase
8
energy regulation
8
polyphosphate synthesis
8
synthesis degradation
8
polyphosphate
5
kinase deletion
4
deletion increases
4
increases laboratory
4
laboratory productivity
4
productivity cyanobacteria
4

Similar Publications

Polyphosphate kinases (PPK) play crucial roles in various biological processes, including energy storage and stress responses, through their interaction with inorganic polyphosphate (polyP) and the intracellular nucleotide pool. Members of the PPK family 2 (PPK2s) catalyse polyP‑consuming phosphorylation of nucleotides. In this study, we characterised two PPK2 enzymes from Bacillus cereus (BcPPK2) and Lysinibacillus fusiformis (LfPPK2) to investigate their substrate specificity and potential for selective nucleotide synthesis.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is a linear polymer of phosphate that plays various roles in cells, including in phosphate and metal homeostasis. Homologs of the vacuolar transporter chaperone 4 (VTC4), catalyzing polyP synthesis in many eukaryotes, are absent in red algae, which are among the earliest divergent plant lineages. We identified homologs of polyphosphate kinase 1 (PPK1), a conserved polyP synthase in bacteria, in 42 eukaryotic genomes, including 31 species detected in this study and 12 species of red algae.

View Article and Find Full Text PDF
Article Synopsis
  • Polyphosphate kinase 2 (PPK2) enzymes are key to transferring phosphate to nucleotides and are categorized into three classes, each with unique preferences.
  • The study of PPK2's distribution among prokaryotes helps understand its evolutionary history and potential adaptations across various species.
  • Observations revealed a significant preference for Class I enzymes in species with multiple PPK2 genes, alongside insights about gene duplication and possible functional versatility that challenge previous understandings of PPK2 evolution.
View Article and Find Full Text PDF

Polyphosphate Kinase from , One Enzyme Catalyzing a Two-Step Cascade Reaction to Synthesize ATP from AMP.

Int J Mol Sci

December 2024

Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.

This study characterizes a novel polyphosphate kinase from (PPK2-III), an enzyme with potential applications in ATP regeneration processes. Bioinformatic and structural analyses confirmed the presence of conserved motifs characteristic of PPK2 enzymes, including Walker A and B motifs, and the subclass-specific residue E137. Molecular docking simulations showed AMP had the highest binding affinity (-7.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a Gram-negative bacterium known to cause urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs), emphasizing its complex pathogenic mechanisms and various virulence factors.
  • Key virulence factors include fimbriae, flagella, urease, and others that aid in colonization, immune evasion, biofilm formation, and urinary stone development.
  • The paper reveals newly identified virulence factors related to the hydrogenase system, autotransporter proteins, and two-component systems, suggesting these could be potential targets for new treatments and vaccines against UTIs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!