Background And Objective: Falls pose a significant risk to public health, especially for the elderly population, and could potentially result in severe injuries or even death. A reliable fall detection system is urgently needed to recognise and promptly alert to falls effectively. A vision-based fall detection system has the advantage of being non-invasive and affordable compared with another popular approach using wearable sensors. Nevertheless, the present challenge lies in the algorithm's limited on-device operating speed due to extremely high computational demands, and the high computational demands are usually essential to improve the performance for the complex scene. Therefore, it is crucial to address the above challenge in computational power and complex scenes.
Methods: This article presents the implementation of a real-time fall detection algorithm with low computational costs using a single webcam. The suggested method optimises precision and efficiency by synthesising the strengths of background subtraction and the human pose estimation model BlazePose. The biomechanical features, derived from body key points identified by BlazePose, are utilised in a random forest model for classifying fall events.
Results: The proposed algorithm achieves 89.99% accuracy and 29.7 FPS with a laptop CPU on the UR Fall Detection dataset and the Le2i Fall Detection dataset. The algorithm shows great generalisation and robustness in different scenarios.
Conclusion: Due to the low computational power of the system, the findings also suggest the potential for implementing the system in small-scale medical monitoring equipment, which maximises its practical value in digital health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880526 | PMC |
http://dx.doi.org/10.1177/20552076241233690 | DOI Listing |
Can J Microbiol
January 2025
Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada;
Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.
View Article and Find Full Text PDFJDS Commun
January 2025
Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
During summer, dairy heifers are often managed extensively in Switzerland. This applies to 2 different types of husbandry systems across the country (i.e.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Faculty of Resources Management, Thai Nguyen University of Agriculture and Forestry, Mo Bach Str, Thai Nguyen City, Thai Nguyen Province, 250000, Vietnam.
Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.
View Article and Find Full Text PDFCase Rep Neurol Med
November 2024
Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA.
Osmotic demyelination syndrome (ODS) is a rare complication associated with rapid sodium changes, typically encountered in patients with severe hyponatremia. ODS in patients with normonatremia (ODSIN) is less recognized. We describe a patient with MRI-detected ODSIN following neurotrauma and reviewed the relevant literature.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Climate warming may induce substantial changes in the ecosystem carbon cycle, particularly for those climate-sensitive regions, such as alpine grasslands on the Tibetan Plateau. By synthesizing findings from warming experiments, this review elucidates the mechanisms underlying the impacts of experimental warming on carbon cycle dynamics within these ecosystems. Generally, alterations in vegetation structure and prolonged growing season favor strategies for enhanced ecosystem carbon sequestration under warming conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!