Different porous structures were studied through finite element analysis and then optimal porous structure was selected for the orthopedic applications. The optimal Voronoi structure was designed and fabricated using 3D printing. The mechanical properties and osseointegration ability were both investigated. The mechanical tests showed that the tensile strength, compressive strength and bending strength of Voronoi structures were obviously higher than that of the human bone, and the modulus of Voronoi structures were similar to human bone. In addition, the animal experimental results exhibited that obvious bone ingrowth was found from Month 1 to Month 6. This study provides some theoretical references for the orthopedic application of porous structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3969/j.issn.1671-7104.230287 | DOI Listing |
Nat Chem
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.
Three-dimensional (3D) covalent organic frameworks (COFs) hold significant promise for a variety of applications. However, conventional design approaches using regular building blocks limit the structural diversity of 3D COFs. Here we design and synthesize two 3D COFs, designated as JUC-644 and JUC-645, through a methodology that relies on using eight-connected building blocks with reduced symmetry.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Material Science and Engineering, Henan University of Technology Zhengzhou, Henan, 450001, China.
A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.
In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:
The development of self-elastic sponges with enhanced hemostatic and antibacterial properties to treat noncompressible hemorrhage and facilitate wound healing remains challenging. Herein, we prepared a chitosan sponge reinforced with lauric acid-modified quaternized chitosan (LQC) and attapulgite, features a porous structure, high self-elasticity, and rapid shape recovery. The incorporation of LQC conferred the sponge with an enhanced capacity to promote the adhesion, aggregation, and activation of blood cells, and resistance to infection by Staphylococcus aureus, Escherichia coli, and Methicillin-resistant Staphylococcus aureus; the incorporation of attapulgite enhanced the hydrophilicity and mechanical strength of the sponge, and its ability to activate the intrinsic and extrinsic coagulation pathways.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!