[Application Research of Vector Flow Technique on Convex Array Ultrasonic Probe of Abdomen].

Zhongguo Yi Liao Qi Xie Za Zhi

Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, 518057.

Published: January 2024

Vector flow imaging (VFI) is an innovative ultrasound flow measurement technology. Compared with the traditional color Doppler and spectral Doppler, VFI has the advantages of independence of angle correction and direct acquisition of real-time amplitude and direction of flow. Transverse oscillation (TO) method is one of the effective methods for vector flow imaging. However, a complete and detailed algorithm validation process based on commercial ultrasound machines is still lacking due to more complex convex probes. This study starts with introducing the imaging process and principle of transverse oscillation vector flow technique, and calculates the error between the set velocity value and the measured velocity value through the simulation experiment, and verifies the error between the set velocity value and the measured velocity value through the Doppler flow phantom experiment. Among them, the velocity value measured by the TO vector flow technique in the simulation experiment is 0.48 m/s and the preset value is 0.50 m/s, the error between them is -4%. The velocity values are 8.33, 11.14, 14.44 and 16.67 cm/s measured by the Doppler flow phantom experiment, the actual velocity values are 7.97, 10.78, 14.06 and 17.34 cm/s, the errors between them are all within ±5%. Both experiments verify the feasibility of using vector flow technique on abdominal convex probe.

Download full-text PDF

Source
http://dx.doi.org/10.3969/j.issn.1671-7104.230086DOI Listing

Publication Analysis

Top Keywords

vector flow
24
flow technique
16
velocity measured
12
flow
10
flow imaging
8
transverse oscillation
8
error set
8
set velocity
8
measured velocity
8
simulation experiment
8

Similar Publications

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.

View Article and Find Full Text PDF

We study properties of a light field at the tight focus of the superposition of two different-order cylindrical vector beams (CVBs). In the source plane, this superposition has a polarization singularity index amounting to the half-sum of the numbers of two constituent CVBs, while having neither spin angular momentum (SAM) nor transverse energy flow. We show that if the constituent CVBs have different-parity numbers, in the focal plane there occur areas that have opposite-sign longitudinal SAM projections, alongside areas of opposite-handed energy flows rotating on closed paths (clockwise and anticlockwise).

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!