A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated transcriptome and DNA methylome analysis reveal the biological base of increased resistance to gray leaf spot and growth inhibition in interspecific grafted tomato scions. | LitMetric

AI Article Synopsis

  • Grafting is a common agricultural technique to help plants withstand environmental stresses, but the specific molecular responses in grafted tomato plants to stress are not completely understood.
  • This study compared the growth and resistance of tomato scions grafted onto tomato, eggplant, and pepper rootstocks, finding that interspecific grafting boosted resistance to gray leaf spot and improved fruit quality, despite lower yields than self-grafting.
  • The research revealed that interspecific grafting activates defense mechanisms and modifies gene methylation patterns, particularly affecting genes tied to the cell cycle and immune responses, which enhances the scions' resistance to biotic stress.

Article Abstract

Background: Grafting is widely used as an important agronomic approach to deal with environmental stresses. However, the molecular mechanism of grafted tomato scions in response to biotic stress and growth regulation has yet to be fully understood.

Results: This study investigated the resistance and growth performance of tomato scions grafted onto various rootstocks. A scion from a gray leaf spot-susceptible tomato cultivar was grafted onto tomato, eggplant, and pepper rootstocks, creating three grafting combinations: one self-grafting of tomato/tomato (TT), and two interspecific graftings, namely tomato/eggplant (TE) and tomato/pepper (TP). The study utilized transcriptome and DNA methylome analyses to explore the regulatory mechanisms behind the resistance and growth traits in the interspecific graftings. Results indicated that interspecific grafting significantly enhanced resistance to gray leaf spot and improved fruit quality, though fruit yield was decreased compared to self-grafting. Transcriptome analysis demonstrated that, compared to self-grafting, interspecific graftings triggered stronger wounding response and endogenous immune pathways, while restricting genes related to cell cycle pathways, especially in the TP grafting. Methylome data revealed that the TP grafting had more hypermethylated regions at CHG (H = A, C, or T) and CHH sites than the TT grafting. Furthermore, the TP grafting exhibited increased methylation levels in cell cycle related genes, such as DNA primase and ligase, while several genes related to defense kinases showed decreased methylation levels. Notably, several kinase transcripts were also confirmed among the rootstock-specific mobile transcripts.

Conclusions: The study concludes that interspecific grafting alters gene methylation patterns, thereby activating defense responses and inhibiting the cell cycle in tomato scions. This mechanism is crucial in enhancing resistance to gray leaf spot and reducing growth in grafted tomato scions. These findings offer new insights into the genetic and epigenetic contributions to agronomic trait improvements through interspecific grafting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880203PMC
http://dx.doi.org/10.1186/s12870-024-04764-8DOI Listing

Publication Analysis

Top Keywords

tomato scions
20
gray leaf
16
grafted tomato
16
resistance gray
12
leaf spot
12
interspecific graftings
12
interspecific grafting
12
cell cycle
12
grafting
9
transcriptome dna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: