Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface-dependent vortex core states have been observed in the newly discovered kagome superconductors CsVSb. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface states, its origin remains elusive. In this study, we present observations of tunable vortex bound states (VBSs) in two chemically-doped kagome superconductors Cs(VTr)Sb (Tr = Ta or Ti), using low-temperature scanning tunneling microscopy/spectroscopy. The CsVSb-derived kagome superconductors exhibit full-gap-pairing superconductivity accompanied by the absence of long-range charge orders, in contrast to pristine CsVSb. Zero-energy conductance maps demonstrate a field-driven continuous reorientation transition of the vortex lattice, suggesting multiband superconductivity. The Ta-doped CsVSb displays the conventional cross-shaped spatial evolution of Caroli-de Gennes-Matricon bound states, while the Ti-doped CsVSb exhibits a sharp, non-split zero-bias conductance peak (ZBCP) that persists over a long distance across the vortex. The spatial evolution of the non-split ZBCP is robust against surface effects and external magnetic field but is related to the doping concentrations. Our study reveals the tunable VBSs in multiband chemically-doped CsVSb system and offers fresh insights into previously reported Y-shaped ZBCP in a non-quantum-limit condition at the surface of kagome superconductor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2024.01.036 | DOI Listing |
Front Pharmacol
December 2024
Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Neprilysin (NEP), a zinc-dependent membrane-bound metallopeptidase, regulates various bioactive peptides, particularly in kidneys, vascular endothelium, and the central nervous system. NEP's involvement in metabolizing natriuretic peptides, insulin, and enkephalins makes it a promising target for treating cardiovascular and Alzheimer's diseases. Several NEP inhibitors, such as sacubitril and omapatrilat, have been approved for clinical use, which inhibit NEP activity to prolong the bioactivity of beneficial peptides, thereby exerting therapeutic effects.
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFThe mu-opioid receptor (MOR) is a major target for the treatment of pain. However, opioids are prone to side effects which limit their effectiveness as analgesics and can lead to opioid use disorders or, even, lethal overdose. The systemic administration of opioid agonists makes it both very difficult to decipher their underlying circuit mechanisms of action and to limit drug action to specific receptor subpopulations to isolate therapeutic effects from adverse side effects.
View Article and Find Full Text PDFIn duplex DNA, A-T and G-C form Watson-Crick base pairs, and Hoogsteen pairing only dominates upon protein binding or DNA damage. Using NMR, we show that an A-T Hoogsteen base pair previously observed in crystal structures of transposon DNA hairpins bound to TnpA protein forms in solution even in the absence of TnpA. This Hoogsteen base pair, located adjacent to a dinucleotide apical loop, exists in dynamic equilibrium with a minor Watson-Crick conformation (population ∼11% and lifetime ∼55 µs).
View Article and Find Full Text PDFChem Res Toxicol
January 2025
SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia.
Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!