Mitochondrial replacement techniques for treating infertility.

J Med Ethics

Institute for Medical Ethics and History of Medicine, Ruhr University Bochum, Bochum, Germany

Published: February 2024

Mitochondrial replacement techniques (MRTs) usually aim to prevent the genetic transmission of maternally inherited mitochondrial diseases. Until now, only the UK and Australia have implemented specific legal regulations of MRTs. In both countries, clinical trials on these techniques are only permissible for cases with a high risk of severe mitochondrial disease in the offspring. However, these techniques can also be applied to treat infertility, especially for older women with impaired oocyte quality. In some countries without legal regulation of these techniques, MRTs are already offered for this purpose. Yet, this application of MRTs has received insufficient attention in the bioethical literature so far.In this paper, I examine whether there are ethical reasons to prohibit trials on MRTs in the context of infertility when they are permitted for preventing mitochondrial disease. Allowing MRTs in one context but not the other might be justified either because their application in the context of mitochondrial disease (1) is supported by a more convincing evidence base, (2) has a higher potential benefit or (3) has a lower risk. I compare both applications of MRTs with respect to these three factors. I conclude that there is no convincing reason to prohibit clinical trials on MRTs for infertility when they are permitted in the context of mitochondrial disease.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jme-2023-109660DOI Listing

Publication Analysis

Top Keywords

mitochondrial disease
16
mitochondrial replacement
8
replacement techniques
8
mrts
8
techniques mrts
8
clinical trials
8
trials mrts
8
mrts context
8
infertility permitted
8
context mitochondrial
8

Similar Publications

Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.

View Article and Find Full Text PDF

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China. Electronic address:

Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.

View Article and Find Full Text PDF

Elevating VAPB-PTPIP51 integration repairs damaged mitochondria-associated endoplasmic reticulum membranes and inhibits lung fibroblasts activation.

Int Immunopharmacol

January 2025

School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China. Electronic address:

Long-term silica exposure to silica dust leads to irreversible pulmonary fibrosis, during which lung fibroblast activation plays an essential role. Mitochondria-associated endoplasmic reticulum membranes (MAMs) is a structural interface for communication between the outer mitochondrial membrane and the endoplasmic reticulum. VAPB-PTPIP51 is a key complex on MAMs.

View Article and Find Full Text PDF

Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study.

Bioorg Chem

December 2024

Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China. Electronic address:

Background: Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!