A novel tracking and analysis system for time-lapse cellular imaging of Schizosaccharomyces pombe.

Genes Genet Syst

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui.

Published: March 2024

The importance of the parent-progeny relationship tracking technique in single-cell analysis has grown with the passage of time. In this study, fundamental image-processing techniques were combined to develop software capable of inferring cell cycle alterations in fission yeast cells, which exhibit equipartition during division. These methods, exclusively relying on bright-field images as input, could track parent-progeny relationships after cell division by assessing the temporal morphological transformation of these cells. In the application of this technique, the software was employed for calculating intracellular fluorescent dots during every stage of the cell cycle, using a yeast strain expressing EGFP-fused Swi6, which binds to chromatin. The results obtained with this software were consistent with those of previous studies. This software facilitated single-cell-level tracking of parent-progeny relationships in cells exhibiting equipartition during division and enabled the monitoring of spatial fluctuations in a cell cycle-dependent protein. This method, expediting the analysis of extensive datasets, may also empower large-scale screening experiments that cannot be conducted manually.

Download full-text PDF

Source
http://dx.doi.org/10.1266/ggs.23-00239DOI Listing

Publication Analysis

Top Keywords

cell cycle
8
equipartition division
8
parent-progeny relationships
8
novel tracking
4
tracking analysis
4
analysis system
4
system time-lapse
4
time-lapse cellular
4
cellular imaging
4
imaging schizosaccharomyces
4

Similar Publications

Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.

Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

Transcription factor networks in cellular quiescence.

Nat Cell Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.

Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways.

View Article and Find Full Text PDF

Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis.

View Article and Find Full Text PDF

Capturing eukaryotic ribosome dynamics in situ at high resolution.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!